

SCHOOL OF ENGINEERING

B. TECH. (COMPUTER SCIENCE ENGINEERING - ML & AI)

SYLLABUS BOOK

AY 2023-24

INSTITUTE VISION

To emerge as an Institute of Excellence by imparting value-based education aided with Research, Innovation and Entrepreneurial skills.

	INSTITUTE MISSION
1.	To impart the holistic engineering education of highest quality & prepare socially responsible
	professionals with entrepreneurial skills.
2.	To prepare value-aided engineering professionals to meet up global industry requirements by
	imparting cutting edge professional education.
3.	To inculcate the attitude of research and innovation among the stake holders through
	experiential and project-based teaching-learning pedagogy.
4.	To acquire global talent pool by providing world class amenities for teaching, learning &
	research.

Graduates will demonstrate ability to:

PEO No	PROGRAMME EUCATIONAL OBJECTIVES
PEO 1	Solve real-world engineering problems, design and develop innovative and cost-effective
	solutions exhibiting engineering skills/fundamentals to cater needs of society.
PEO 2	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting
	comprehensive competitiveness.
PEO 3	Exhibit professional ethics & values, effective communication, teamwork, multidisciplinary
	approach, and ability to relate engineering issues to broader societal framework.

PO No	PROGRAMME OUTCOMES
PO 1	Engineering knowledge:
	Apply knowledge of engineering fundamentals, science, mathematics & engineering
	specialization for the solution of complex engineering problems.
PO 2	Problem analysis:
	Identify, formulate and analyze complex engineering problems leading to substantial
	conclusions using basic principles of mathematics, science and engineering.
PO 3	Design/development of solutions:
	Develop solutions for complex engineering problems and design system components or
	processes meeting specified needs having due consideration for the safety and societal &
	environmental considerations.
PO 4	Conduct investigations of complex problems:
	Use research-based knowledge & methods like design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid & viable conclusions.
PO 5	Modern tool usage:
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT
	tools for prediction and modeling of complex engineering activities with an understanding of
	the limitations.
PO 6	The engineer and society:
	Apply cognitive learning by the contextual knowledge to assess societal, health, safety, legal
	and cultural issues and following responsibilities relevant to the professional engineering
	practice.
PO 7	Environment and sustainability:
	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge & skill needed for sustainable
DO O	development. Values & Ethics:
PO 8	
	Apply basic moral values & ethical principles and pledge to professional ethics/norms and
PO 9	responsibilities of the engineering practice. Individual and team work:
PU 9	
	Function effectively as an individual/as a team member or as a leader in diverse teams, and
PO 10	in multidisciplinary settings. Communication:
1010	Communication: Communicate effectively on complex engineering activities with the engineering community
	and with society at large, such as, being able to comprehend and write effective reports and
	design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance:
	Demonstrate knowledge and understanding of the engineering and management principles
	and apply these to one's own work, as a member and leader in a team, to manage projects in
	multidisciplinary environments.
PO 12	Life-long learning:
	Recognize the need, do necessary preparation and ability to engage in independent and life-
	long learning in the broadest context of technological change.

PSO No	PROGRAMME SPECIFIC OUTCOMES (PSO)
	COMPUTER SCIENCE ENGINEERING (ML & AI)
PSO 1	Build skills to develop software applications in specialised areas of Computer Science &
	Engineering such as artificial intelligence, machine learning, data science & gaming.
PSO 2	Analyse and formulate solutions to real world and socially relevant problems using
	Artificial Intelligence and Machine Learning concepts.
PSO 3	Prepare technically competent employee, researcher, entrepreneur, excel in competitive
	exams, and boost passion for the higher studies.

	Credit Guidelines (General)										
Component	Hour/Week	Credit	Total Hours/Semester								
Theory	1	1	15								
Practical	2	1	30								
Tutorial	1	1	15								
Note: In specific cases; extra credits can be granted for specific/important subjects.											

	CO-PO Mapping Guidelines									
Mapping Level	% age Mapping	Indicator								
0 / -	0	No Mapping								
1	0-33	Low Level (Slightly Mapped)								
2	33-66	Medium Level (Moderately Mapped)								
3	>66	High Level (Strongly Mapped)								

Syllabus Book

B. Tech.

Computer Science Engineering (Machine Learning & Artificial Intelligence)

P P Savani University

School of Engineering

Effective From: 2023-24

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-32
2	Syllabi of Second Year	33-64
3	Syllabi of Third Year	65-130

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR FIRST YEAR B.TECH. COMPUTER SCIENCE ENGINEERING (ML&AI) PROGRAMME AY: 2023-24

Sem	Course		Offered	Teaching Scheme						Examination Scheme					
Jein	Code	Course Title	By	Contact Hours			Credit	Theory		Practical		Tutorial		- Total	
				Theory	Practical	Tutorial	Total	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH1110	Calculus	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SESH1120	Linear Algebra	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SEME1110	Hardware Workshop	ME	0	4	0	4	4	0	0	100	0	0	0	100
	SECE1110	Software Workshop	CE	0	4	0	4	2	0	0	100	0	0	0	100
	SEIT1110	Cyberspace Awareness	IT	2	0	0	2	2	40	60	0	0	0	0	100
	SEIT1120	Competitive Quantitative Aptitude	IT	2	0	0	2	2	40	60	0	0	0	0	100
1 OR 2	SECE1120	Joy of Programming	CE	3	2	0	5	4	40	60	40	60	0	0	200
1 UK 2	SESH1130	Conceptual Experimental Physics	SH	3	2	0	5	4	40	60	40	60	0	0	200
	SECH1110	Fundamental Chemistry & Environmental Science	СН	3	2	0	5	4	40	60	40	60	0	0	200
	SEME1120	Fundamentals of Technical Drawing	ME	0	4	0	4	4	0	0	40	60	0	0	100
	SECV1110	Core Engineering Concepts	CV	3	2	0	5	4	40	60	40	60	0	0	200
	CFLS2130	Intermediate Communicative English	CFLS	2	2	0	4	3	100	00	100	0	0	0	200
	CLSC2070	Essentials of Entrepreneurship	CFLS/SLM	2	0	0	2	2	100	0	0	0	0	0	100
						Total	52	45							2000

	SESH1110	Calculus	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SEME1110	Hardware Workshop	ME	0	4	0	4	4	0	0	100	0	0	0	100
	SEIT1110	Cyberspace Awareness	IT	2	0	0	2	2	40	60	0	0	0	0	100
Group	SESH1130	Conceptual Experimental Physics	SH	3	2	0	5	4	40	60	40	60	0	0	200
1	SEME1120	Fundamentals of Technical Drawing	ME	0	4	0	4	4	0	0	40	60	0	0	100
	SECE1120	Joy of Programming	CE	3	2	0	5	4	40	60	40	60	0	0	200
	CFLS2130	Intermediate Communicative English	CFLS	2	2	0	4	3	100	0	100	0	0	0	200
						Total	29	26	11						
	SESH1120	Linear Algebra	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SECE1110	Software Workshop	CE	0	4	0	4	2	0	0	100	0	0	0	100
	SEIT1120	Competitive Quantitative Aptitude	IT	2	0	0	2	2	40	60	0	0	0	0	100
Group 2	SECH1110	Fundamental Chemistry & Environmental Science	СН	3	2	0	5	4	40	60	40	60	0	0	200
	SECV1110	Core Engineering Concepts	CV	3	2	0	5	4	40	60	40	60	0	0	200
	CLSC2070	Essentials of Entrepreneurship	CFLS/SLM	2	0	0	2	2	100	0	0	0	0	0	100
						Total	23	19							900

Department of Science and Humanities

Course Code: SESH1110 Course Name: Calculus

Prerequisite Course/s: Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	Theory Practical		Tuto	orial	Total				
				CE	ESE	CE	ESE	CE	ESE			
3	0	2	5	40	60	0	0	100	0	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- summarize concept of calculus to enhance ability of analysing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for applications of mathematical techniques in engineering.
- develop the tool of convergence or divergence of any infinite series and power series for learning advanced Engineering Mathematics.
- acquire knowledge of partial differentiation and ability to work with applications to advanced Engineering Mathematics.
- application of concavity of graph and find out points of inflection.

Section I							
Module No.	Content	Hours	Weightage in %				
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	9	20				
2.	2. Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.						
3.	Sequence and Series-II Power series, Taylor and Macluarin series, Indeterminate forms and L'Hospitals Rule.	5	10				
	Section II						
Module No.	Content	Hours	Weightage in %				
4.	Partial Derivatives Function of several variables, Partial differentiation, Applications, Chain rule, Linear approximations, Maxima and Minima, Euler's theorem, Lagrange multiplier.	11	30				

	Curve tracing		
5.	Tracing of Cartesian Curves, Polar Coordinates, Polar and Parametric	11	20
	Form of Standard Curves, Areas and Length in Polar co-ordinates		
	TOTAL	45	100

List of Tutorials:

Sr.	Name of Tutorial	Hours
No.	Name of Tutorial	nours
1.	Calculus-1	4
2.	Calculus-2	4
3.	Calculus-3	2
4.	Sequence and Series-1	4
5.	Sequence and Series-2	2
6.	Sequence and Series-3	2
7.	Partial Derivatives-1	4
8.	Partial Derivatives-2	2
9.	Curve tracing-1	4
10.	Curve tracing-2	2
	TOTAL	30

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel	Pearson
	Hass	
Elementary linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book:

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley and Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama Verma	S. Chand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 50 marks
- Continuous Evaluation consists of self-performance assignment to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

SESH1110	CALCULUS
CO 1	Recall the concepts of limit, continuity and differentiability for analysing
	mathematical problems.
CO 2	Analyze the series for its convergence and divergence to solve real world problems.
CO 3	Evaluate various limit problems using L' Hospital's rule.
CO 4	Identify the ordinary differentials and partial differentials and solve the maximum
	and minimum value of function.
CO 5	Construct the graphs for function with intervals and identify more application for
	function.

Mapping of CO with PO-PSO

- Aupping of do with 1 o 1 bo												
SESH1110	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	3	1	1								1
CO 2	3	2	1									1
CO 3	2	2	1									
CO 4	2	2	1	1								1
CO 5	2	2	1									1

Mapping of CO with PSO

Mapping of do with 1 b			
SESH1110	PSO1	PSO2	PSO3
CO 1	3		
CO 2	1	1	
CO 3	1	2	
CO 4	3	2	
CO 5	1	1	

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Calculus	1, 2, 3, 4, 5
2	Sequence and Series – I	1, 2, 3, 4, 6
3	Sequence and Series – II	1, 2, 3, 4, 6
4	Partial Derivatives	1, 2, 3, 4, 5
5	Curve tracing	1, 2, 3, 4, 5, 6

Department of Science and Humanities

Course Code: SESH1120 Course Name: Linear Algebra

Prerequisite Course/s: -- Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Е	xaminat	ion Sche	me (Mar	ks)	
Theory	Practical	Tutorial	Credit	The	heory Practical Tutorial			orial	Total	
				CE	ESE	CE	ESE	CE	ESE	
3	0	2	5	40	60	0	0	100	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- analyse and solve system of linear equations and understand characteristics of Matrices.
- learn about and work with vector space, linear transformation and inner product space.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Matrix Algebra Elementary Row and Column operations, Inverse of matrix, Rank of matrix, System of Linear Equations, Characteristic Equation, Eigen values and Eigen vector, Diagonalization, Cayley Hamilton Theorem.	12	30
2.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	11	20
	Section II	1	T
Module No.	Content	Hours	Weightage in %
3.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps.	9	20
4.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram-Schmidt process and QR Decomposition, Least square decomposition.	8	20
5.	Beta and Gamma function	5	10

Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (without proof)		
TOTAL	45	100

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
5.	Matrix Algebra-1	4
6.	Matrix Algebra-2	2
7.	Vector Space-1	4
8.	Vector Space-2	2
9.	Linear Transformation-1	4
10.	Linear Transformation-2	2
11.	Inner Product Space-1	4
12.	Inner Product Space-2	2
13.	Beta and Gamma function-1	4
14.	Beta and Gamma function-2	2
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley & Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama Verma	S. Chand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 50 marks.
- Continuous Evaluation consists of self-performance assignment to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH1120	LINEAR ALGEBRA & CALCULUS
----------	---------------------------

CO 1	Evaluate linear system using matrices and the knowledge of eigenvalues and eigenvectors for matrix diagonalization
CO 2	Determine the basis and dimension of vector spaces and subspaces.
CO 3	Discuss the matrix representation of a linear transformation given bases of the relevant vector space.
CO 4	Apply vectors, inner products, and linear transformations to real world situations.
CO 5	Classify gamma, beta functions & their relation which is helpful to evaluate some definite integral arising in various branch of engineering.

Mapping of CO with PO-PSO

SESH1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	3	1	1								3
CO 2	3	2	1									2
CO 3	2	2	1									3
CO 4	2	2	1	1								1
CO 5	2	1	1									1

Mapping of CO with PSO

SESH1120	PSO1	PSO2	PSO3
CO 1	3	2	
CO 2	1	1	
CO 3	2	2	
CO 4	2	2	
CO 5			

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Matrix Algebra	1, 2, 3, 4, 5, 6
2	Vector Space	1, 2, 3, 4, 6
3	Linear Transformation	1, 2, 3, 4, 6
4	Inner Product Space	1, 2, 3, 4, 5, 6
5	Beta and Gamma Function	1, 2, 3, 4, 5

P P Savani University

School of Engineering

Department of Mechanical Engineering

Course Code: SEME1110

Course Name: Hardware Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatio	n Schem	e (Mar	ks)	
Theory Practical Tutor		Tutorial	Tutorial Credit		eory	Prac	tical	Tuto	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	04	00	04	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

Module No.	Contents	Weightage in %
1.	Introduction: Introduction to Various Shops / Sections and Workshop Layouts, Safety Norms to be Followed in a Workshop. Fitting Shop: Introduction of Fitting Shop; Safety; Making a Job as perDrawing including Marking and other Performing Operations. Carpentry and Drilling Shop: Introduction of Carpentry Shop; Preparation of Job as per Drawing including Marking and other Performing Operations. Introduction to Machine Tools: Introduction and Demonstration of various Machine Tools like Lathe, Drilling, Grinding, Hack Saw Cutting etc. Introduction to Welding & Plumbing: Introduction and Demonstration of Welding process. Introduction and Demonstration of Plumbing Shop.	
2.	Introduction to Computer Hardware Computer hardware structure, Identify and understand hardware components: CPU, Motherboard, RAM, HDD, SSD, Keyboard, Ports, Mouse, Monitor, Printer, UPS/SMPS, etc. Hardware Maintenance and Troubleshooting Assembling and disassembling a PC, connectors and cables, BIOS setup, Disk management, Device manager, Task manager, Network management, Backup/recovery disk.	

3.	Electrical and Electronic Skill: Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C & diode) and ICs on PCB, connections on Breadboard	25%
4.	Logic Gates: Digital Electronics, Symbol and truth table of Logic gates (OR, AND, NOT, NAND, NOR and EX-OR gate), De morgan's theorem. Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & Use of CRO for the measurement of voltage (dc or ac frequency, time period. Special features of dual trace, Digital storage Oscilloscope: Block diagram and principle of working.	25%

List of Practical:

Sr.	Name of Practical	Hours
No.		
1.	Introduction and Demonstration of Safety Norms. Different Measuring Instruments.	12
	Introduction and Demonstration of Machine Shop. To Perform a Job of Fitting Shop.	
2.	To Perform a Job of Carpentry Shop. Introduction and Demonstration of Plumbing Shop & Welding Process.	15
3.	(I)Identify computer hardware layout and components (II)Perform assembling and disassembling of PC	08
4.	Configure BIOS, disk, network and other hardware management	05
5.	Understanding the electronic components and study of Shouldering and Desoldering of electronic components on PCB Board.	04
	Understanding the connection on Breadboard and study of Alternate Flashing LED Lights using Breadboard.	06
7.	Verify the truth table of Logic gates and De morgan's theorem on IC trainer board.	04
8.	Study of Cathode Ray Oscilloscope.	06
	TOTAL	60

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology	S K Hajra Choudhury	Media Promoters & Publishers
A text book in Electrical Technology	B L Theraja	S Chand and Co

Reference Book(s):

Title	Author(s)	Publication
Basic Electronics: A text lab manual	P.B. Zbar, A.P. Malvino, M.A. Miller	Mc-Graw Hill.
Digital Electronics	Subrata Ghoshal	Cengage Learning

Course Evaluation:

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator

- Internal Viva consists of 30 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1110	HARDWARE WORKSHOP
CO 1	Apply the application of mechanical workshop such as fitting, drilling and carpentry.
	Understand various tools of mechanical workshop and understand its applications.
CO 2	Identify and inspect hardware components and interpret latest development of the
	field.
CO 3	Make students capable of analysing and solving the varieties of problems
	coming up in the electrical measurements and also enable the students to
	design as well as trouble shoots the circuits and networks through hands-on
	mode.
CO 4	Develop skill to build, and troubleshoot digital circuits.

Mapping of CO with PO-PSO

			_									
SEME1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	2	1	2	1		3	3		3	3	1	3
CO 2	2	1	1	2	2	2			2	2	1	2
CO 3	3	2	2	2	2	2	2	3	2	2	3	3
CO 4	2	3	2	3	3		3	3	1	2	1	2

Mapping of CO with PSO

SEME1110	PSO1	PSO2	PSO3
CO 1	3	1	1
CO 2	1	1	2
CO 3	1	3	3
CO 4	2	2	2

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction, Fitting Shop, Carpentry Shop and Drilling Shop,	2,3,4,6
	Introduction to Machine Tools, Welding and Plumbing	
2	Introduction to Computer Hardware, Hardware Maintenance and	1,2,3,4,5,6
	Troubleshooting	
3	Understand and designing of Electrical circuit	2,3,5
4	Cathode ray oscilloscope and Digital Electronics	1,2,3,5

Department of Computer Engineering

Course Code: SECE1110

Course Name: Software Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			neme (Hours/Week) Examination Scheme (Marks)									
Theory Practical Tu		Tutorial Credit		Practical Tutorial		The	ory	Prac	tical	Tuto	rial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total		
00	04	00	02	00	00	100	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Provide a comprehensive knowledge of overall basic computer software tools and technology.
- Providing hands-on experience related to basic software installation, usage of Operating systems, and various essential software utilities.

	Section I	
Module No.	Content	Weightage in %
1.	Software Fundamentals Introduction to Software, Types of software, Applications of software, Web based software, Understand Software specific requirements, Installation of Software	10
2.	Operating System Introduction of OS, Functions of Operating System, Types of OS, Installation of Windows and Linux OS, Linux architecture, Role of Device Drivers in OS, Shell scripting, Command structure, and general-purpose utility.	25
3.	DOS Commands Getting Started with DOS, Introduction to Command Prompt, System Files and Command, Creating directories, Traversing through directories, Deleting directories, Viewing Files within a directory.	15
	Section II	
Module No.	Content	Weightage in %
4.	Application Software Introduction to Application Software, Types of Application Software, Installation of Application Software, Logo Designing, Creating Flowcharts and diagrams, Introduction To Google Apps.	10
5.	Data Analysis using Application Software Introduction to Spreadsheets, Spreadsheet Functions to Organize Data, Introduction to Filtering, Pivot Tables, and Charts, VlookUp and HlookUp in Spreadsheets.	15

	Website Creation	
6.	Creating a website using Google Sites, Creating Web Pages, Working with Images, Working with Documents on Web Pages. Introduction to Wordpress, Installing Web Server and Wordpress, Creating Web pages in	25
	Wordpress.	

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Study of Different Software.	2
2.	Installation of any 2 software with required plugins and libraries.	4
3.	Study of Different Operating Systems.	2
4.	Creation of Bootable Pen drive.	2
5.	Installation of Windows OS.	2
6.	Installation of Linux OS using VMWare.	2
7.	Study of Basic commands of Linux/UNIX.	4
8.	Study of Basic commands of DOS.	4
9.	Design logo using Canva.	2
10.	Draw a Flowchart to find maximum of two numbers in either draw.io or Microsoft Visio or LucidChart.	2
11.	Study of different Google Apps.	4
12.	Create a Google Doc and Google sheet and share with 2 classmates.	2
13.	Demonstrate working of HlookUp and VlookUp in Excel.	2
14.	Create different types of charts in Excel.	4
15.	Demonstrate Data Analysis in Excel.	4
16.	Create a Google Website with minimum two pages showing your personal details.	4
17.	Demonstrate embedding of a youtube video and pdf document on a web page in google site.	4
18.	Demonstrate placing Map and hyperlinks on web page in Google Site.	4
19.	Create a wordpress site and create minimum three web pages and menu to navigate between the pages.	4
20.	Demonstrate the use of Accordian in wordpress.	2
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Fundamentals Of Computers, 2nd Edition	Reema Thareja	Oxford University Press
Excel 2019 Bible	Michael Alexander, Richard Kusleika, John Walkenbach	Wiley

Reference Book(s):

Title	Author/s	Publication
UNIX : Concepts and Applications 4th	Sumitabha Das	McGraw Hill Education
Edition		

Web Material Link(s):

- https://sites.google.com/site/willkimbley/google-apps-tutorials
- https://www.cs.upc.edu/~robert/teaching/foninf/doshelp.html

- https://www.javatpoint.com/software-engineering
- https://www.wikihow.com/Create-a-Website-Using-Google-Sites
- https://www.wpbeginner.com/guides/

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 marks per each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during Internal practical Exam.
- Mini Project performance consists of 40 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

SECE1110	Software Workshop
CO 1	Understand the types of computer software with their requirements and how to use
COT	as per the need.
CO 2	Install different Operating Systems and learn commands used in the OS.
CO 3	Get familiar with the application software and different applications of application
CO 3	software
CO4	Achieve some useful information from data through analysis and represent it with
C04	different views like charts, graphs etc.
CO 5	Learn the designing and development of website to have a global communication.

Mapping of CO with PO:

Happing of Co with 1 O.												
SECE1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	2			1							2
CO 2	3	3	2		3					2		3
CO 3	3	2	1	1	2							3
CO 4	2		3	3	3				1	2		3
CO 5	3		3	2	3			1				3

Mapping of CO with PSO:

SECE1110	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	3	
CO 3	3	2	
CO 4	3	3	2
CO 5	3	3	3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Software Fundamentals	1,2
2	Operating System	1,2,3,6
3	Disk Operating System	2,3
4	Application Software	2,3,4,5
5	Data Analysis using Application Software	3,4,5,6

6	Website Creation	2,3,6

Department of Information Technology

Course Code: SEIT1110

Course Name: Cyberspace Awareness

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks))		
Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	rial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	0	0	2	40	60	00	00	0	0	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- understand governance, regulatory, legal, economic, environmental, social, and ethical context of cyber security.
- equip students with the technical knowledge and skills needed to protect and defined against cyber threats.
- help students to protect the one's data, systems, and networks from malicious attacks and cyber threats.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Cyber space Cyber space, Cyber Crime and its Types, Overview of Cyber Security, Cyber Attacks in History, Internet Governance, Hacking and its Types, Cracking, Overview of System and Web Vulnerability, OWASP	06	20
2.	Cyber Threats Various Cyber Threats, Malware, Phishing, Password Attacks, DOS attack, Man in the Middle, Drive by download, Malvertising, Rogue Software, Cyber Warfare and its conflicts, Cyber Terrorism, Case studies	09	30
	Section II		
Module No.	Content	Hours	Weightage in %
3.	Cyber security Practices Cyber Security Practices and dos and don'ts, Data Privacy and Security, Security Controls, Overview of social media and its security, E-Commerce, Digital payments and its security, Tools and technology for cyber security, Platform to report and combat cyber crime, Case studies	05	15

	Cyberspace and the Law		
	Cyber Security Regulations, Cyber Law, need for a Comprehensive	06	15
1	Cyber Security Policy, Need for an International convention on Cyber	00	13
4.	space, Contemporary crime, Roles of International Law, the state and		
	Private Sector in Cyberspace, Cyber Security Standards, The INDIAN		
	Cyberspace, Indian IT Act 2000, Indian IT Act 2008, Case studies		
	Cyber Forensics		
_	Introduction to Cyber Forensics, Handling Preliminary analysis,	04	20
5.	Investigating Investigations, Controlling an Investigation, Legal		
	Policies, Case studies		
	TOTAL	30	100

Text Book(s):

Title	Author/s	Publication
Cybersecurity for Beginners	Raef Meeuwisse	Cyber Simplicity Ltd

Reference Book(s):

Title	Author/s	Publication
Cyber Security	Nina Godbole, Sunit Belapure	Wiley India, New Delhi
The Indian Cyber Law	Suresh T. Vishwanathan;	Bharat Law House New
		Delhi

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After completion of the course, the students will be able to,

SEIT1110	Cyberspace Awareness
CO 1	Understand Concepts of Cyber space.
CO 2	Analyze the Concepts of Cyber Threats.
CO 3	Elaborate the overview of social media and understanding cybercrimes.
CO 4	Identify cyber laws and cyber acts in India.
CO 5	Explore different case studies based on cyber-Forensics.

Mapping of CO with PO:

SEIT1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	2				3						2
CO 2	2	3				3						2
CO 3	3	2				3			2			3
CO 4		3				3		3		2		3
CO 5		2			2			2		3		3

Mapping of CO with PSO:

SEIT1110	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	2	3	2
CO 3	3	2	3
CO 4	2	3	2
CO 5	3	3	2

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply			
4: Analyze	5: Evaluate	6: Create			

Module No	Content	RBT Level
1	Introduction to Cyber space	1
2	Cyber Threats	1,2
3	Cyber security Practices	1,2,3
4	Cyberspace and the Law	1,2
5	Cyber Forensics	1,23

Department of Computer Engineering

Course Code: SEIT1120

Course Name: Competitive Quantitative Aptitude

Prerequisite Course(s): ---

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exan	nination	Scheme	(Marks)	
Theory P	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	rial	Total
	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

• This course is designed to suit the need of the outgoing students and to acquaint them with frequently asked patterns in quantitative aptitude and logical reasoning during various examinations and campus interviews.

	Section I			
Module No.	Content	Hours	Weightage in %	
	Quantitative Ability (Basic Mathematics)			
1.	Number Systems, LCM and HCF, Decimal Fractions, Simplification, Square Roots and Cube Roots, Average, Problems on Ages, Surds & Indices, Percentages, Problems on Numbers, Quadratic Equations	5	15	
	Quantitative Ability (Applied & Engineering Mathematics)- Part I			
2.	Logarithm, Permutation and Combinations, Probability, Profit and Loss, Simple and Compound Interest,	5	35	
	Quantitative Ability (Applied & Engineering Mathematics) -Part II			
3.	Time, Speed and Distance, Time & Work, Ratio and Proportion, Mixtures and Allegation	5	20	
	Section II			
Module No.	Content	Hours	Weightage in %	
4.	Data Interpretation Data Interpretation, Tables, Column Graphs, Bar Graphs, Line Charts, Pie Chart, Venn Diagrams	6	20	
5.	Logical Reasoning (Deductive Reasoning) Analogy, Blood Relation, Directional Sense, Number and Letter Series, Coding – Decoding, Calendars, Clocks, Seating Arrangement, Syllogism	6	20	

6.	Mensuration & Trigonometry		
	Two-dimensional (2D) and Three-dimensional (3D) Mensuration,	2	10
	Degree and Radian Measures, Trigonometric Ratios, Complementary	3	10
	Angles, Height and Distance, Standard Identities, Area, Inequalities		
	TOTAL	30	100

Text Book(s):

Title	Author/s	Publication
Quantitative aptitude for Competitive examination	R S Agarwal	S. Chand
A Modern Approach to Verbal & Non-Verbal Reasoning	R S Agarwal	S. Chand

Reference Book(s):

Title	Author/s	Publication
Analytical and Logical reasoning	Sijwali B S	arihant

Web Material Link(s):

- https://prepinsta.com/
- https://www.indiabix.com/
- https://www.javatpoint.com/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

SEIT1120	Competitive Quantitative Aptitude							
CO 1	Understand the basic concepts of quantitative ability							
CO 2	Understand the basic concepts of logical reasoning Skills							
CO 3	Acquire satisfactory competency in use of reasoning							
CO4	Solve campus placements aptitude papers covering Quantitative Ability, Logical Reasoning Ability							
CO 5	Compete in various competitive exams like CAT, CMAT, GATE, GRE, GATE, UPSC, GPSC etc							

Mapping of CO with PO:

SEIT1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	2							2			3
CO 2	2	3							2			3
CO 3	2	3							3			3
CO 4		3							3			3
CO 5									3	3		3

Mapping of CO with PSO:

SEIT1120	PSO1	PSO2	PSO3
CO 1	2	2	3
CO 2	2	3	3
CO 3	2	3	3
CO 4	2	3	3
CO 5			3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Quantitative Ability (Basic Mathematics)	1, 3, 5
2,3	Quantitative Ability (Applied & Engineering Mathematics)	1, 2, 3, 5
4	Data Interpretation	2, 3, 6
5	Logical Reasoning (Deductive Reasoning)	2, 4, 5
6	Mensuration & Trigonometry	1, 3, 5

Department of Computer Engineering

Course Code: SECE1120

Course Name: Joy of Programming

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Ex	aminatio	n Schen	ne (Mark	s)			
Theory	Dragtical	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify appropriate approach to computational problems.
- develop logic building and problem-solving skills.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Motivation of Programming: Use of Programming, Importance of Programming, Discussion of different Case Study	5	14						
2.	Welcome to Programming: Introduction of Programming, Flow Charts and Algorithms, Debugging, Tracing the execution of the Program, Watching Variables Values in Memory, Character Set, Keyword and Identifiers, Constants and Variables, Data Types - Declaration and Initialization, Basic Input, and Output Operations, Symbolic Constants, Overflow and Underflow of Data.	9	18						
3.	Conditional Statements and Looping Statements: Decision Making & Branching: Decision Making with If and Ifelse Statements, Nesting of Ifelse Statements, The Switch and goto statements. Looping: The while Statement, The Break Statement & The Do While loop, The FOR loop, Jump within loops-Programs.	9	18						
	Section II								
Module No.	Content	Hours	Weightage in %						
4.	Collection of Data: Introduction, One-dimensional Arrays, Two-dimensional Arrays, Concept of Multidimensional Arrays, Declaring and Initializing String Variables, Arithmetic Operations on Characters, Putting Strings Together, Comparison of Two Strings, String Handling Functions, Dictionary, List, Tuples and Sets.	10	20						
5.	Functions Introduction to Functions, defining a Function, Calling a Function, Types of Functions, Function Arguments, Anonymous Functions, Global and Local Variables, Recursion	6	15						

6.	Building Desktop Application Exploring the Tkinter Library in Python, Creating basic Desktop application using Tkinter	6	15
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical	Hours			
1.	Working with basic elements of C languages (different input functions,	2			
	different output functions, different data types, and different operators).	2			
2.	Working with control structures (if statement, if-else statement, nested if-	2			
	else statement, switch statement, break statement, goto statement).	2			
3.	Working with array and strings in C.	4			
4.	Introduction to Python (Introduction to IDLE, different data types, Input Output in	2			
	Python, Operators, Operator precedence).				
5.	Implementation of Dictionaries, Sets, Tuples and Lists and its various methods in				
	Python.	6			
6.	Working with functions in C/Python.	2			
7.	Working with recursive function in C/Python.	2			
8.	Building desktop application of your own calculator in Python.	4			
9.	Case Study:				
	a. Sorting : Arrange the books	6			
	b. Searching: Find in seconds	0			
	c. Recursion: Tower of Hanoi				

[#] Use of different libraries will be covered in Practical Assignments.

Text Book(s):

Title	Author(s)	Publication
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill
Python Programming: A mo	odular Sheetal Taneja, Naveen Kumar	Pearson
approach		

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Python Cookbook	David Ascher, Alex Martelli Oreilly	O Reilly Media

Web Material Link(s):

- https://www.tutorialspoint.com/cprogramming/index.htm
- https://www.w3schools.com/c/
- https://www.tutorialspoint.com/python/
- https://www.w3schools.com/python/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical which will be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.

• Viva/oral performance consists of 30 marks during End Semester Exam.

Course Outcomes:

After completion of the course, the students will be able to

SECE1120	JOY OF PROGRAMMING
CO 1	Immediately analyze the syntax and semantics of the computer languages and apply it
COT	in programs.
CO 2	Implement computing solutions using logic building and problem-solving skills of a
CO 2	given programming language.
CO 3	Interpret the fundamental language syntax, semantics and fluent in the use of python
CO 3	or any computer language control flow statements.
CO 4	Determine the methods to create and manipulate programs by utilizing the data
CO 4	structures like lists, dictionaries, tuples and sets with emphasis on Python.

Mapping of CO with PO:

<u> </u>												
SECE1120	PO1	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	2			3			2	2			3
CO 2	2	3			3				2			3
CO 3	3	2			3							3
CO 4	3				3							3

Mapping of CO with PSO:

SECE1120	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	3	2
CO 3	3	2	2
CO 4	3	3	2

Level of Revised Bloom's Taxonomy in Assessment:

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Motivation of Programming	1, 2, 4
2.	Welcome to Programming	1, 2, 3
3.	Conditional Statements and Looping Statements	1, 2, 3
4.	Collection of Data	1, 2, 3
5.	Functions	2, 3, 4, 6
6.	Building Desktop Application	2, 3, 4, 6

Department of Chemical Engineering

Course Code: SECH1110

Course Name: Fundamental Chemistry & Environmental Science

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory Practical	ractical Tutorial Credit		Theory		Practical		Tutorial		Total	
	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand the basic concepts of chemistry, including atoms, molecules, and chemical processes.
- Apply the scientific method to examine chemical phenomena, including the design and execution of
 experiments, data analysis, and evidence-based conclusion drawing.
- Evaluate the causes and consequences of environmental problems and propose solutions based on scientific evidence.
- Integrate knowledge from multiple disciplines to analyze environmental problems and propose effective solutions.

	Section I									
Module No.	Content	Hours	Weightage in %							
1.	Introduction to Chemistry Overview of the scientific method and chemistry as a science, Basic concepts of matter, including atoms, molecules, and the periodic table, Introduction to chemical bonding and intermolecular forces, Basic principles of chemical reactions, including stoichiometry and reaction types	6	15							
2.	Chemical Thermodynamics and Kinetics Introduction to thermodynamics and the laws of thermodynamics, Energy and enthalpy changes in chemical reactions, Introduction to chemical kinetics and reaction rates, Factors affecting reaction rates, including temperature, concentration, and catalysts	6	15							
3.	Properties of Matter and Solutions Physical properties of matter, including states of matter and phase changes, Solutions and their properties, including solubility and colligative properties, Introduction to acids and bases and their properties, Chemical equilibrium and the equilibrium constant	5	10							
4.	Organic Chemistry Introduction to organic chemistry and the basics of carbon chemistry, Functional groups and their properties, Nomenclature and isomerism in organic compounds, Introduction to organic reactions and mechanisms	6	10							

	Section II								
Module	Content	Hours	Weightage in %						
	Introduction to Environment								
5.	Definition, principles and scope of Environmental Science, Impacts	06	10						
5.	of development on Environment, Environmental Degradation, The	06	10						
	interdisciplinary nature of environmental science, Concept of 4R's								
	Environmental Pollution								
	a) Water Pollution: Introduction – Water Quality Standards, Sources								
	of Water Pollution, Classification of water pollutants, Effects of								
	water pollutants.								
	b) Air Pollution: Composition of air, Structure of atmosphere,								
	Ambient Air Quality Standards, Classification of air pollutants,								
6.	Sources of common air pollutants like PM, SO ₂ , NO _X , Auto exhaust,	08	20						
	Effects of common air pollutants								
	c) Noise Pollution: Introduction, Sound and Noise, Noise								
	measurements, Causes and Effects.								
	d) Solid Waste: Generation and management								
	e) Bio-medical Waste: Generation and management								
	f) E-waste: Generation and management								
	Social Issues and Environment								
	Sustainable Development, Equitable use of Resources for								
7.	sustainable lifestyle and it's benefits, Water conservation, Climate	08	20						
	Change, Global Warming and Green House Effect, Acid Rain,								
	Depletion of Ozone layer, Carbon Footprint								
	TOTAL	45	100						

List of Practical:

Sr. No	Name of Practical	Hours			
	Acid-base titration adding a base of known concentration to an acid of unknown	02			
1.	concentration until the reaction is complete, and the concentration of the acid				
	is determined.				
2.	Determination of the boiling point of a liquid heating a sample of a liquid and	02			
۷.	observing the temperature at which it boils.				
3.	Determination of the density of a liquid weighing a known volume of a liquid	04			
٥.	and calculating its density.				
4.	Determination of the pH of a solution using a pH meter to measure the acidity	04			
4.	or basicity of a solution.				
5.	Flame test: burning a sample of a substance and observing the color of the flame				
Э.	to identify the presence of certain elements.				
6.	Preparation of a salt reacting an acid and a base to form a salt and observing the	02			
0.	reaction products.	02			
7.	Testing of soil acidity	02			
8.	Studying the effect of temperature on the solubility of a solid in water at	02			
0.	different temperatures to see how temperature affects solubility.	02			
9.	Studying the properties of acids and bases: Students can test the properties of	04			
7.	different acids and bases (e.g., pH, conductivity) and compare their properties.				

10.	Investigating the reaction between an acid and a metal and measure the	04
10.	amount of gas produced.	

Text Book(s):

Title	Author/s	Publication
Textbook of Environmental Chemistry and	Dr. S. S. Dara, Dr. D.D.	
Pollution Control	Mishra	S Chand & Co Ltd
Environmental Studies	Benny Joseph	Mc.Graw hill education Pvt. Ltd.
Environmental Studies	Dr. S.K. Dhameja	S.K. Kataria & Sons

Reference Book(s):

Title	Author/s	Publication
Engineering Chemistry	Jain & Jain	Dhanpat Rai Publishing
		company
Environmental Studies (From crisis to	R. Rajagopalan	OXFORD university press
cure)		

Web Material Link(s):

https://www.iare.ac.in/sites/default/files/lecture notes/IARE ENS LECTURE NOTES 2.pdf

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral presentation consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

SECH1110	Fundamental Chemistry & Environmental Science
CO 1	Develop a fundamental understanding of the principles and concepts of chemistry,
	including atomic structure, chemical reactions, and chemical bonding.
CO 2	Demonstrate an ability to apply chemical knowledge to real-world problems, such as
	calculating reaction yields and predicting chemical properties.
CO 3	Identify the types of pollution in society along with their sources.
CO 4	Realize the global environmental issues.

Mapping of CO with PO:

SECH1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2	1	1			2			2		1
CO 2	1	1	2	3		1	2			1		1
CO 3	1	2	2	3	3	3		2	1	1	3	

	1				ı				I
I CO 4	3	3	2	2	1	1		3	1
	_	_	_	_	_	_		_	_

Mapping of CO with PSO:

SECH1110	PSO1	PSO2	PSO3
CO 1	1	2	3
CO 2	3	1	1
CO 3	2		2
CO 4	1		

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Introduction to Chemistry	2,1
2	Chemical Thermodynamics and Kinetics	4, 5
3	Properties of Matter and Solutions	1,2
4	Organic Chemistry	4,5
5	Introduction to Environment	1,2
6	Environmental Pollution	1,2,3
7	Social Issues and Environment	1,2,3

Department of Mechanical Engineering

Course Code: SEME1120

Course Name: Fundamentals of Technical Drawing

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching So (Hours/W			Examination Scheme (Marks)						
Theory Practical Tu	Tutorial	Credit	The	eory	Prac	tical	Tuto	orial	Total	
Theory	Tractical	Tutoriai	Great	CE	ESE	CE	ESE	CE	ESE	Total
00	04	00	04	00	00	40	60	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know conventions and the methods of engineering drawing.
- Interpret engineering drawings using fundamental technical mathematics.
- Construct basic and intermediate geometry.
- Improve their visualization skills so that they can apply these skills in developing new products.
- Improve their technical communication skill in the form of communicative drawings.
- Comprehend the theory of projection.
- Basic knowledge of computer-aided drawing using AutoCAD.

Section I						
Module No.	Contents		Weightage in %			
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning, and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.	03	05%			
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes, Spiral, and Normal & Tangent to each curve.	12	15%			
3.	Projections of points, lines & planes: Types of Projections; Introduction of Principle Planes of Projections; Projection of Points in all four Quadrants; Projection of Lines inclined to one Referral Plane & two Referral Planes. True length and inclination with reference plane; Projection of Planes (Circular and Polygonal) with inclination to one Referral Plane and two Referral Planes; Concept of Auxiliary Projection Method.	15	30%			

Module No.	Content	Hours	Weightage in %
	Orthographic Projection and Isometric Projections		
	Types of Projections: Principle of First and Third Angle Projection		
4.	Applications & Difference; Projection from Pictorial view of Object,	18	30%
	View from Front, Top, and Sides; Full Section View. Isometric Scale,		
	Conversion of Orthographic views into Isometric Projection,		
	Isometric View, or Drawing of simple objects.		
	Residential Building Planning:		
5.	Introduction to buildings, Classification of buildings, Principles of		
	building planning, Principles of architecture composition, Detail	0.6	100/
	drawing, Line Plan, plan, elevation, section, Preparing working	06	10%
	drawing of residential building.		
6.	Computer-Aided Drawing:		
	Introduction to AutoCAD, Basic commands for 2D drawing (Line,	0.6	100/
	Circle, Polyline, Rectangle, Hatch, Fillet, Chamfer, Trim, Extend, Offset,	06	10%
	Dim style, etc.)		

Sr.	Name of Practical	Hours
No.		
	Introduction sheet (dimensioning methods, different types of lines, construction of	
1.	various polygons, dividing the line and angle into parts, use of stencil, lettering), plane	03
	scale and diagonal scale	
2.	Engineering curves	12
3.	Projection of points, lines & planes	15
4.	Orthographic projection	10
5.	Isometric projection	10
6.	Residential building drawing (Line plan, Plan, Elevation, Section, Schedule opening)	04
7.	Computer-Aided Drawing	06
	TOTAL	60

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering Graphics	P J Shah	S. Chand & Company Ltd., New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House, Anand
Building Planning, Designing and	Gurucharan	Standard Book
Scheduling	Singh	

Reference Book(s):

Title	Author(s)	Publication
Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi
Engineering drawing made Easy	K. Venugopal	Wiley Eastern Ltd
Building Drawing	M. G. Shah, C.M. Kale, S.Y. Patki	Tata McGraw Hill

Web Material Link(s):

• http://nptel.ac.in/courses/105104148/

Course Evaluation:

Practical:

- Continuous evaluation consists of performance of practical/tutorial which will be evaluated out of 20 marks for each practical/tutorial and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical test will consist of 30 marks and viva will consist of 30 marks during end semester exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1120	FUNDAMENTALS OF TECHNICAL DRAWING
CO 1	Apply BIS standards of building planning and conventions while drawing Lines, printing Letters, and showing dimensions.
CO 2	Explore the various methods to draw various engineering curves and their applications.
CO 3	Classify the orthographic projection systems concerning the observer, object, and reference planes.
CO 4	Develop 3D Isometric views in relation to 2D orthographic views.
CO 5	Software application in engineering drawing.

Mapping of CO with PO:

SECH1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	1	1	1				1			1	
CO 2	2		1	1	1			1			1	
CO 3	2		1	1				1			1	1
CO 4	2		1	2	1			1			1	1
CO 5	2	1	1	2	1			1			1	1

Mapping of CO with PSO:

SECH1120	PSO1	PSO2	PSO3
CO 1	1	2	2
CO 2	2	2	3
CO 3	2	3	1
CO 4	3	3	3
CO 5	3	3	3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2, 6
2	Engineering Curves	2, 6
3	Projection of Points, Line & Plane	1, 2, 3, 4
4	Orthographic Projection	2, 5, 4
5	Isometric Projections and Isometric Drawing	2, 5, 4

6	Computer-Aided Drawing	2,3,6

Department of Civil Engineering

Course Code: SECV1110

Course Name: Core Engineering Concepts.

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	hoory Practical Tutorial		y Practical Tutorial Credit	Credit	The	eory	Prac	tical	Tuto	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	02	00	04	40	60	40	60	00	00	200	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Study the basic fundamentals of construction planning and material.
- Study significance of mechanical engineering systems in different fields of engineering.
- Study the basic concepts of electrical and electronics engineering.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Basics of Construction material and techniques						
	Common materials used in construction, Aggregate, Sand, Cement, Bricks, Timber, Steel, Paints. Bonds in brick masonry techniques, Foam works, Curing, Compaction of concrete, Water proofing, Fire safety norms and requirement.	08	18				
2.	Building planning and Bye laws Building by laws as per national building code, building by laws as per local authority, standards for residential, public, commercial, industrial and institutional buildings planning, planning of earth quake resistance building, overview of RERA and ODPS, Green building and LEED certification, general layout, maps and plan used at construction site.	08	18				
3.	Basic Electricity Principles Concept of Charge, Potential Difference and Current, Resistor, capacitor, Inductor, Ohm's law, effect of Temperature on resistance, temperature coefficient, Series and parallel combinations of Resistors and capacitors, Lenz and Faraday's laws for electromagnetic induction, AC Electricity and DC Electricity. Electrical Wiring: Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drop and losses across cables and conductors.	07	14				

	Section II		
Module No.	Content	Hours	Weightage in %
	Basics of I.C Engines:		
4.	Construction and working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines.	08	18
	Power Transmission Elements:		
5.	Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	08	18
	DC Circuits and AC Circuits		
6.	DC Circuits: Introduction of Electrical circuit elements (prerequisites), voltage and current sources, Kirchoff's current and voltage laws, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits. AC Circuits: Representation of sinusoidal waveforms, peak and RMS values, Phasor representation of AC quantities, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), Series and parallel resonance. Three phase balanced circuits, voltage and current relations in star and delta connections, Power measurement in three phase circuits.	06	14
	Basics of Steam Generators:		
7.	Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox Boiler, Functioning of Different Mountings and Accessories	LAB	08
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Preparation of drawing sheet showing various bonds.	04
2.	Preparation of Basic plan of Construction site.	04
3.	Preparation sketch of various building component.	04
4.	Verify the series and parallel connections of resistors and capacitors.	04
5.	To understand construction and working of various types of boilers.	04
6.	To understand construction and working of mountings and accessories.	04
7.	To verify the Kirchoff's current and voltage laws and Network theorems.	02
8.	To understand construction and working 2 -stroke & 4 -stroke Petrol engines.	02
9.	To understand construction and working 2 -stroke & 4 -stroke Diesel engines.	02
	TOTAL	30

Text Book(s):

Title	Author(s)	Publication
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications
Building construction	Dr. B C Punamia	Laxmi Publication
A text book in Electrical Technology	B L Theraja -	S Chand & Co.
Basic Electrical Engineering	D. C. Kulshreshtha	McGraw Hill, 2009

Reference Book(s):

Title	Author(s)	Publication
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.
Town Planning	G. K. Hiraskar	Dhanpatrai Publications
Basic Electrical Engineering	Nagsarkar and Sukhija,	Oxford University Press

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 20 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral performance of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECV1110	Core Engineering Concepts
CO 1	Understand basic properties of various construction materials.
CO 2	Understand the general rules and regulation of building planning.
CO3	Apply the principles of basic mechanical engineering.
C04	Comprehend the importance of mechanical engineering equipments like IC engine and power transmission elements.
CO5	Understand working of various instruments and equipments used for the measurement of various electrical engineering parameters like voltage, current, power, phase etc in industry as well as in power generation, transmission and

Mapping of CO with PO:

rapping of co with 1 or												
SECH1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	3	3	1	2	1	2	1	1	2	1	1
CO 2	3	3	3	2	2	2	2	1	2	2	1	1
CO 3	3	2	2	2	2	2	2	1	2	2	2	1
CO 4	3	2	2	2	3	2	2	1	2	2	2	1
CO 5	3	3	3	2	3	2	2	1	2	2	2	1

Mapping of CO with PSO:

SECH1110	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	2	3	2
CO 3	3	3	3
CO 4	3	2	3
CO 5	3	3	2

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Construction material and techniques	1, 2, 3
2	Building planning and Bye laws	1, 2
3	Basic Electricity Principles	1,2,3
4	Power Transmission Elements	1, 2
5	Basics of I.C Engines	2
6	DC Circuits and AC Circuits	2,3,4
7	Basics of Steam Generators	1, 2

SECOND YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR SECOND YEAR B.TECH. COMPUTER SCIENCE ENGINEERING (MLAI) PROGRAMME AY: 2023-24

					Teachi	ng Scher	ne		Examination Scheme								
Sem	Course Code	Course Title	Course Category	Offered By		Contact H		Contact Hours		Credit-	Theory		Practical		Tutorial		Total
				2)	Theory	Practical	Tutorial	Total	Creuit	CE	ESE	CE	ESE	CE	ESE	Total	
	SESH2130	Discrete Structures & Graph Theory	Interdisciplinary	SH	3	0	2	5	5	40	60	0	0	100	0	200	
	SECE2210	Database Management System	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	SECE2221	Data Structures	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
3	SEIT2210	Object Oriented Programming with Java	Major/Core	IT	3	2	0	5	4	40	60	40	60	0	0	200	
	SEIT2220	Software Engineering	Major/Core	IT	3	0	1	4	4	40	60	0	0	100	0	200	
	CFLS2140	Upper Intermediate Communicative English	AEC	CFLS	2	0	0	2	2	100	0	0	0	0	0	100	
	CLSC2020	IPDC-I	VAC	CLSC	2	0	0	2	2	100	0	0	0	0	0	100	
							Total	28	25							1200	
	SESH2140	Differential Equations & Statistics	Interdisciplinary	SH	3	0	2	5	5	40	60	0	0	100	0	200	
	SECE2231	Computer Organization	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	SECE2240	Computer Networks	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
4	SEIT2230	Operating System	Major/Core	IT	3	2	0	5	4	40	60	40	60	0	0	200	
	SEIT2241	Mobile Application Development	Major/Core	IT	0	4	0	4	2	0	0	40	60	0	0	100	
	CLSC2030	IPDC-II	VAC	CLSC	2	0	0	2	2	100	0	0	0	0	0	100	
							Total	26	21							1000	

Department of Science & Humanities

Course Code: SESH2130

Course Name: Discrete Structures & Graph Theory

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory Pr	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03		02	05	40	60			100		200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- extend concepts of set theory by the study of relation and lattice.
- illustrate mathematical logic with various techniques of program verification.
- apply knowledge of discrete mathematics for problem-solving skills necessary to succeed in the
 design and analysis of algorithms, database management, software engineering, and computer
 networks.

Section I								
Module No.	Content	Hours	Weightage in %					
1.	Set, Relation & Function Sets, Set operations, Introduction of Relations, Relations of Sets, Types of Relations, Properties of Relations, Equivalence Relation, Partial Ordering, Hasse Diagram, GLB & LUB, Functions, Classification of functions, Types of functions	08	17					
2.	Lattices Definition & properties of Lattice, Lattices as Algebraic System, Sublattices, Types of lattices, Distributive lattices, Modular lattices, Complemented lattices, Bounded lattices, Complete lattices, Finite Boolean algebra	07	16					
3.	Group Theory Binary operations, Properties of Group, Groupoid, semigroup & monoid, Abelian group, Subgroup, Cosets, Normal subgroup, Lagrange's theorem, Cyclic group, Permutation group, Homomorphism & Isomorphism of groups.	08	17					
	Section II							
Module No.	Content	Hours	Weightage in %					
4.	Mathematical Logic and Proof Propositions, logical operators, Algebra of proposition, Predicates & quantifiers, Nested Quantifiers, Rules of Inference, Proof Methods, Program Correctness techniques.	06	14					
5.	Graph Theory Graphs and Graph Models, Graph Terminology and Types of graphs, Representing graphs and Isomorphism, Connectivity, Euler and Hamilton Paths-Circuits, Applications of weighted graphs.	08	18					
6.	Tree							

Introduction to	Trees, Rooted Tree, Properties of tree, Binary tree,	08	18
Tree Traversal,	Spanning Tree, DFS, BFS, Minimum Spanning Tree,		
Prim's Algorithi	n, Kruskal's Algorithm.		
	TOTAL	45	100

List of Tutorial(s):

Sr. No.	Name of Practical	Hours
1.	Problems based on Set, Relation & Function-1	2
2.	Problems based on Set, Relation & Funciton-2	2
3.	Problems based on Set, Relation & Funciton-3	2
4.	Problems based on Lattices	4
5.	Problems based on Group Theory-1	2
6.	Problems based on Group Theory-2	4
7.	Problems based on Mathematical Logic and Proof	2
8.	Problems based on Graph Theory-1	2
9.	Problems based on Graph Theory-2	2
10.	Problems based on Graph Theory-3	4
11.	Problems based on Tree-1	2
12.	Problems based on Tree-2	2
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Discrete Mathematics and its	Kenneth Rosen	McGraw Hill, New
Applications		York.

Reference Book(s):

Title	Author(s)	Publication
A Textbook of Discrete	Dr. Swapan Kumar Sarkar	S. Chand & Company Ltd.,
Mathematics		New Delhi.
Discrete Mathematical Structure	J.P.Trembly, R.Manohar	Tata McGraw-Hill Publishing
with Applications to Computer		Company Ltd. New Delhi.
Science		
Graph Theory with Applications to	Narsingh Deo	PHI Learning Pvt. Ltd. New
Engineering and Computer Science		Delhi.

Web Material Link(s):

- http://nptel.ac.in/courses/111107058/
- http://nptel.ac.in/courses/111107058/
- http://nptel.ac.in/courses/111104026/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of the performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 50 marks.
- Assignment consists of 20 marks.
- Internal viva consists of 30 marks.

Course Outcome(s):

After completion of the course, the students will be able to

	of the course, the students will be usic to
SESH2130	DISCRETE STRUCTURES & GRAPH THEORY
CO 1	Summarize the concepts of set theory for understanding & fetching data from a
COT	database using query.
CO 2	Classify the basic concepts of spanning tree algorithms namely DFA, BFS, prim's and
CO 2	Kruskal's in the design of networks.
CO 3	Construct the algorithm of group theory for data encryption.
CO 4	Combine the design, foundational concepts of notations and results of graph theory
CO 4	used for better understanding of problems.

Mapping of CO with PO

- 10-PPB 01	0 0 11 1012											
SESH2130	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1	2	2	1	1								1
CO 2	3	3	1	1								3
CO 3	2	2	1	1								1
CO 4	3	3	1	1								3

Mapping of CO with PSO

SESH2130	PSO1	PSO2	PSO3
CO 1	1	2	
CO 2	2	2	
CO 3	1	1	
CO 4	3	1	2

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Set, Relation & Function	1,2,4,6
2.	Lattices	1,2,3,4,6
3.	Group Theory	1,2,3,5,6
4.	Mathematical Logic and Proof	1,2,3,4,6
5.	Graph Theory	1,2,3,5,6
6.	Tree	1,2,3,5,6

Department of Computer Engineering

Course Code: SECE2210

Course Name: Database Management System

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	tical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the basic concept of database design and development of database management system.
- understand Query processing of SQL.
- understand the importance of back-end design and relational database management System (RDBMS).

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to DBMS Introduction and applications of DBMS, Purpose of DBMS, File system versus DBMS, Advantages of DBMS, Database System architecture, Database users, DBA	04	10				
2.	Entity-Relationship model Basic concepts, Design process: Attributes, Entity and Relationship, E-R constraints, weak entity sets, extended E-R features: generalization, specialization, aggregation, conversion of E-R diagram into database schema.	07	15				
3.	SQL Concepts Basics of SQL, Types of SQL language, Using DDL statements to create and manage tables, defining constraints: primary key, foreign key, unique key, Not null, check, Manipulating data using DML statements, Retrieving data using SQL select statement, SQL conditions in where clause, Built-in functions: numeric, date, string functions, Displaying data from multiple tables using Joins, Aggregate functions with group by and having clause, Subqueries with operators, SQL views, TCL commands: Commit, Rollback, Savepoint, DCL commands: Grant, revoke, query processing steps	12	25				
	Section II						
Module No.	Content	Hours	Weightage in %				
4.	Relational Model Structure of relational databases, Domains, Relations, Relational algebra: fundamental operators and syntax, inner join, outer join, relational algebra queries	05	12				
5.	Normalization Functional Dependency: Definition, trivial and non-trivial FD, closure of attributes, closure of FD set, irreducible set of FD, Decomposition	07	15				

	using FD, dependency preservation, Database design anomalies, Normalization: 1NF, 2NF, 3NF, BCNF, Multi-valued dependency, 4NF.		
6.	Transaction Management Transaction concepts, ACID property of transactions, concurrent executions of transactions and related problems, serializability of transactions, testing for serializability, deadlock, solution to concurrency related problems: Locking mechanism, two-phase locking protocol, System recovery, Log-based recovery, Two- phase commit protocol	07	15
7.	Basics of PL/SQL Programming structure of PL/SQL, Datatypes, Exception Handling, Cursor, Stored Procedure, Function, Trigger	03	08
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Draw E-R Diagram of any management system with the use of any tools.	02
2.	Installation of database management system e.g MYSQL, ORACLE, etc.	02
3.	Introduction to SQL, DDL, DML, DCL, database and table creation, alteration, defining constraints, primary key, foreign key, unique, not null, check.	06
4.	Implement different operators and inbuilt SQL functions.	02
5.	Implement different types of join operations and relevant features of SQL.	04
6.	Implement aggregate functions with group by, having, order by features of SQL.	04
7.	Implement the sub-queries and views in SQL.	04
8.	Study and use of Transaction control commands, Commit, Rollback, Save point features of SQL.	02
9.	Introduction to PL/SQL concepts and implementation of Cursors.	02
10.	Study and Implementation of stored procedures, stored function and triggers.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Database System Concept	Abraham Silberschatz, Henry F.	McGraw Hill
	Korth, S. Sudarshan	
SQL, PL/SQL-The Programming	Ivan Bayross	BPB Publications
Language of Oracle	-	

Reference Book(s):

Title	Author(s)	Publication
Fundamental of Database system	R. Elmasri and S.B Navathe	The Benjamin/Cumming
Oracle: The Complete Reference	George Koch, Kevin Loney	TMH /Oracle Press
An Introduction to Database	C J Date	Addition-Wesley
system		

Web Material Link(s):

- https://nptel.ac.in/courses/106105175
- https://www.youtube.com/watch?v=c5HAwKX-suM

Course Evaluation:

Theory

• Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted out of 30 marks.

- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks.
- Viva-voce consists of 30 marks.

Course Outcome(s):

After completion of the course, the students will be able to

SECE2210	DATABASE MANAGEMENT SYSTEM
CO1	Understand the importance of back-end design and relational database management
	system.
CO2	Apply physical data, conceptual data and its conversion into relational databases.
CO3	Practice various database constraints on relational databases.
CO4	Design and develop database for the software projects.

Mapping of CO with PO

SECE2210	PO1	PO2	P03	PO4	PO5	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	3	2		2					1		3
CO 2	3	3	2		2							1
CO 3	3	3	2		2					1		1
CO 4	3	3	3	2	3					2	2	2

Mapping of CO with PSO

SECE2210	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	2	2
CO 3	3	3	2
CO 4	3	3	3

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to DBMS	1,2
2.	Entity-Relationship model	1,2,3
3.	SQL Concepts	4,6
4.	Relational Model	3,4
5.	Normalization	2,3
6.	Transaction Management	2,3,4
7.	Basic of PL/SQL	2,4,6

Department of Computer Engineering

Course Code: SECE2221 Course Name: Data Structures

Prerequisite Course(s): Introduction to Computer Programming (SECE1020)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)			
Theory	Dragtical	ical Tutorial Cradit		Practical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	02		04	40	60	40	60			200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand linear and non-linear data structures and its applications.
- analyze various searching and sorting algorithms and its impacts on data structures.
- develop logic building and problem-solving skills.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Data Structures Basic Terminology, Classification of Data Structures: Primitive and Non-Primitive, Linear and Non-linear, Operations on Data Structures.	04	10				
2.	Array Array Representation, Array as an Abstract Data Type, Programming Array in C, Sparse Matrices, Sparse Representations, and its Advantages, Row-measure Order and Column-measure Order representation.	04	10				
3.	Searching and Sorting Linear Search, Binary Search, Bubble Sort, Insertion Sort, Selection Sort, Radix sort.	04	10				
4.	Stack and Queue Stack Definition and concepts, Operations on stack, Programming Stack using Array in C, Prefix and Postfix Notations and their Compilation, Recursion, Tower of Hanoi, Representation of Queue, Operation on Queue, Programming Queue using Array in C. Types of Queue, Applications of Stack & Queue.	07	15				
5.	Linked List-Part I Dynamic Memory Allocation, Structure in C, Singly Linked List Doubly Linked List, circular linked list.	03	05				
	Section II						
Module No.	Content	Hours	Weightage in %				
6.	Linked List-II and Applications of Linked List Linked implementation of Stack, Linked implementation of Queue, Applications of Linked List.	03	08				
7.	Trees and Graphs Graph Definition, Concepts, and Representation, Types of Graphs, Tree Definition, concepts, and Representation. Binary Tree, Binary Tree Traversals, conversion from general to Binary Tree. Threaded	12	25				
			30				

	Binary Tree, Heap, Binary Search Tree. Tree for Huffman coding, Breadth First Search, Depth First Search, Spanning Tree, Kruskal's and Prim's Minimum Cost Spanning Tree Algorithms, Dijkstra's Shortest Path Algorithm.		
8.	Hashing The Symbol Table Abstract Data Types, Hash Tables, Hashing Functions, Hash collision Resolution Technique, Linear Probing.	04	10
9.	Advanced Search Structures AVL Trees. 2-3 Trees. 2-3-4 Trees. Red-Black Trees. B-Trees. B+ Tree Splay Trees. Digital Search Trees. Tries.	04	07
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Working with the array.	04
	 Write a program to read numbers and store it in array and display it. 	
	 Write a program to demonstrate the concept of one-dimensional array finding the sum of array. 	
	 Write a program to insert an element in array. 	
	 Write a program to delete an element from an array. 	
	 Write a program to add two matrix A and B. 	
	 Write a program to concatenate two strings. 	
2.	Write a program to perform Linear Search.	02
3.	Write a program to perform Binary Search.	02
4.	Write a program to perform Bubble sort.	02
5.	Write a program to perform Selection sort.	02
6.	Write a program to perform Insertion sort.	02
7.	Write a program to implement a stack and perform push, pop operation.	02
8.	Write a program to perform the following operations in a linear queue –Addition, Deletion, and Traversing.	02
9.	Write a program to perform the following operations in singly linked list – Creation, Insertion, and Deletion.	04
10.	Write a program to create a binary tree and perform – Insertion, Deletion, and Traversal.	04
11.	Write a program for traversal of graph (B.F.S., D.F.S.).	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
An Introduction to Data Structures	Jean-Paul Tremblay, Paul G.	Tata McGraw Hill
with Applications	Sorenson	

Reference Book(s):

Title	Author(s)	Publication
Data Structures using C & C++	Tanenbaum	Prentice-Hall
Fundamentals of Computer	E. Horowitz, S. Sahni, and S.	Galgotia Publication
Algorithms	Rajsekaran	
Data Structures: A Pseudo-code	Gilberg & Forouzan	Thomson Learning
approach with C		

Web Material Link(s):

• https://nptel.ac.in/courses/106102064/

Course Evaluation: Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE2221	DATA STRUCTURES
CO 1	Differentiate primitive and non-primitive data structures.
CO 2	Understand the concept of dynamic memory management.
CO 3	Apply algorithm for solving problems like sorting, searching, insertion and deletion of data.
CO 4	Describe the hash function and concepts of collision and its resolution methods.

Mapping of CO with PO

SECE2221	P01	PO2	P03	PO4	P05	P06	PO7	P08	P09	PO10	P011	PO12
CO 1	2	1	2	2								
CO 2	2	1	2	1							1	
CO 3	2	2	3	2	1	2						
CO 4	2	1	2	2			1				1	

Mapping of CO with PSO:

SECE2221	PSO1 PSO2		PSO3
CO 1	2	3	3
CO 2	2	1	2
CO 3	2	1	1
CO 4	2	2	2

Level of Revised Bloom's Taxonomy in Assessment:

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Data Structures	1,2,4
2.	Array	1,2,3
3.	Searching and Sorting	2,4,5
4.	Stack and Queue	1,2,3,4
5.	Linked List-Part I	1,2,3
6.	Linked List-II and Applications of Linked List	2,3,6
7.	Trees and Graphs	2,3,4
8.	Hashing	2,3,4
9.	Advanced Search Structures	2,3,4

Department of Computer Engineering

Course Code: SEIT2210

Course Name: Object Oriented Programming with Java

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Dractical	Tutorial Credit		The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand the fundamentals of programming such as variables, conditional and iterative execution, methods, etc.
- Understand the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc.
- Be aware of the important topics and principles of object-oriented software development.
- Be able to use the Java SDK environment to create, debug and run core Java programs.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Fundamental of Object-Oriented Programming: History of Java, Basic overview of java, Bytecode, JVM, Buzz- words, Application and applets, Constants, Variables, Data Types, Comments, Operators, Control Flow	04	06
2.	Class Fundamentals: General form of class, Creating class Overloading methods, Constructor, Declaring Object, Returning objects, using objects as parameters, assigning object reference variables, Introducing Access control, understanding static, introducing final, the finalize () method, This keyword, Garbage collection.	06	17
3.	Array & String Handling: Array basics, String Array, String class, String Buffer class, String Tokenizer Class and Object Class.	06	10
4.	Inheritance, Interfaces & Packages: Inheritance: Using super creating multilevel Hierarchy, method overriding, Dynamic method dispatch, abstract classes, using final with Inheritance, Using Package: Defining package, finding package and CLASSPATH, Access protection, importing package, Interface: Defining Interface, Implementing Interface, Variables in Interface.	06	17
	Section II		
Module No.	Content	Hours	Weightage in %
5.	Exceptions Handling: Exception types, TryCatchFinally, Throw, Throws, creating your own exception subclasses.	06	14
6.	Multithreaded Programming: Life cycle of thread, thread methods, thread priority, thread	08	18

	exceptions, Implementing Runnable interface, Synchronization.		
7.	GUI Programming & Lambdas and Streams: Introduction to Annotation, Byte streams and character streams, Wrapper classes, Why Lambda Expression, Lambda Expression Syntax, where to use lambda expression, Adopting Patterns like matching, finding and filtering, Swing overview, Swing component classes: AbstractButton, ButtonGroup, ImageIcon, JApplet, Jbutton, JcheckBox, JcomboBox, Jlabel, JradioButton, JscrollPane, JtabbedPane, Jtable, JtextField, Jtree.	09	18
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Introduction to Java Environment and NetBeans	02
2.	Implementation of Java programs with classes and objects	02
3.	Implementation of Java programs to create functions, constructors with overloading and overriding	02
4.	Implementation of Java programs to demonstrate different access specifiers	02
5.	Implementation of Java programs for variables, data types, operators	02
6.	Implementation of Java programs to use arrays and string	02
7.	Implementation of Java programs for inheritance (single, multilevel, hierarchical)	02
8.	Implementation of Java programs to demonstrate the use of super keyword	02
9.	Implementation of Java programs for Interface	02
10.	Implementation of Java programs to demonstrate Java packages	02
11.	Implementation of Java programs for exception handling using all keywords (try, catch, throw, throws and finally)	02
12.	Implementation of Java programs to demonstrate the life cycle of thread	02
13.	Implementation of Java programs for the concepts of thread priority, synchronization, inter-thread communication	04
14.	Implementation of Java AWT programs to Create Registration Form	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Java The Complete Reference	Herbert Schildt	McGraw Hill

Reference Book(s):

Reference Book(3):	terer ence Book(b)r							
Title	Author(s)	Publication						
Core Java Volume I - Fundamentals	Cay Horstmann and Gray	Pearson						
	Cornell							
Thinking in Java	Bruce Eckel	Pearson						
Learning Java	Patrick Niemeyer & Jonathan	O'Reilly Media						
-	Knudsen	-						

Web Material Link(s):

- https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html
- http://openjdk.java.net/projects/jigsaw/
- https://docs.oracle.com/en/java/javase/14/docs/api/index.html
- https://netbeans.apache.org/download/index.html
- https://download.eclipse.org/eclipse/downloads/

Course Evaluation:

Theory:

• Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.

- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT2210	Object Oriented Programming with Java				
CO 1	Implement Object Oriented programming concept using basic syntaxes of control Structures, strings, and function for developing skills of logic building activity.				
CO 2	Use of a variety of basic control structures including selection and repetition; classes and objects in a tiered architecture (user interface, controller, and application logic layers)				
CO 3	Demonstrates how to achieve reusability using inheritance, interfaces, and packages and describes faster application development that can be achieved.				
CO 4	Demonstrate understanding and use of different exception handling mechanisms and concepts of multithreading for robust faster and efficient application development.				
CO 5	Identify and describe common abstract user interface components to design GUI in Java using Swing along with a response to events. Identify, Design & develop complex Graphical user interfaces using principal Java Swing classes based on MVC architecture				

Mapping of CO with PO

mapping or	happing of co with fo											
SEIT2210	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1	1	3	2	1	2				3	1	1	3
CO 2	2	3	2	2	1				3	1	1	3
CO 3	3	2	3	2	3				3	1	1	3
CO 4	3	2	3	2	1				3	1	1	3
CO 5	1	2	3	2	2		1		3	1	1	3

Mapping of CO with PSO

SEIT2210	PSO1	PSO2	PSO3
CO 1	2	3	1
CO 2	1	3	2
CO 3	3	2	1
CO 4	3	3	2
CO 5	2	2	1

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Fundamental of Object-Oriented Programming	1,2
2.	Class Fundamentals	1,2
3.	Array & String Handling	3,4
4.	Inheritance, Interfaces & Packages	2,3,4

5.	Exceptions Handling	2,3
6.	Multithreaded Programming	2,3
7.	GUI Programming & Lambdas and Streams	2,3,4

Department of Computer Engineering

Course Code: SEIT2220

Course Name: Software Engineering

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Dunatical	Tutorial Credit		The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03		01	04	40	60			100		200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Study the pioneer of Software Development Life Cycle, Development models, and Agile Software Development.
- Study fundamental concepts in software testing, including software testing objectives, processes, criteria, strategies, and methods.
- Discuss various software testing issues and solutions in software unit tests; integration, regression, and system testing.
- Learn the process of improving the quality of software work products.

	Section I						
Module No.	Content	Hours	Weightage in %				
	Introduction to Software and Software Engineering						
	The Evolving Role of Software, A Crisis on the Horizon and						
1.	Software Myths, Layered Technologies, Processes, Methods and	06	15				
1.	Tools, Generic View of Software Engineering, Study of Different	00	13				
	Models-Waterfall model, Incremental model, Evolutionary process						
	models- Prototype, Spiral, and RAD model.						
	Agile Development						
2.	Agility and Agile Process model, Extreme Programming, Other	04	10				
	process models of Agile Development and Tools.						
	Requirement Analysis and Specification						
3.	Problem Recognition, Understanding the Requirement, Requirement Modelling, Requirement Specification (SRS), Requirement Analysis	05	10				
	and Requirement Elicitation, Requirement Engineering.						
	Structured Software Design						
	Design Concepts, Design Model, Software Architecture, Data Design,						
4.	Architectural Design, Component Level Design (Function Oriented	08	20				
	Design, Object Oriented Design), User Interface Design, Web						
	Application Design.						
	Section II						
Module	Content	Hours	Weightage				
No.			in %				
	Software Coding & Testing						
	Programming principles, Coding Standards and coding						
5.	Guidelines, Unit testing; Metrics, Software testing	08	20				
	fundamentals, Black-box and white box testing, Basis path						
	testing, Control structure testing, Black-box testing - Graph-						
			1.0				

	based testing method, Boundary value analysis; Testing strategies - A strategic approach to software testing, Test strategies for conventional and object-oriented software, test case generation and tool support, Metrics - Coverage analysis-reliability.		
6.	Quality Assurance Quality Control, Assurance, Cost, Reviews, Software Quality Assurance, Approaches to SQA, Reliability, Quality Standards- ISO9000 and 9001.	04	08
7.	Software Project Management Scope and Feasibility, Effort Estimation, Schedule and staffing, Quality Planning, Risk management- identification, assessment, control, project monitoring plan, Detailed Scheduling. Six Sigma for SE, Management Spectrum, People –Product – Process- Project, W5HH Principle, Importance of Team Management.	06	10
8.	Software Maintenance and Configuration Management Types of Software Maintenance, Re-Engineering, Reverse Engineering, Forward Engineering, The SCM Process, Identification of Objects in the Software Configuration, Version Control and Change Control.	04	07
	TOTAL	45	100

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	To select the project title and apply requirement engineering to it.	01
2.	To perform the system analysis: Requirement analysis, SRS.	01
3.	To perform the function-oriented diagram: DFD and Structured chart.	01
4.	To perform the user's view analysis: Use case diagram.	01
5.	To draw the structural view diagram: Class diagram.	01
6.	To draw the behavioral view diagram: Sequence diagram, Activity diagram.	02
7.	To study various testing tools.	01
8.	To design test cases.	01
9.	To study cost estimation and preparation of timeline chart.	01
10.	To study the different types of performance testing.	01
11.	To study the usage of regression testing.	01
12.	To understand the usage of software metrics.	01
13.	Project Work: Understand the importance of the SDLC approach & various	02
	processes.	
	TOTAL	15

Text Book(s):

Title	Author/s	Publication
Fundamentals of Software	Fundamentals of Software	Fundamentals of
Engineering	Engineering	Software Engineering
Rajib Mall	Rajib Mall	Rajib Mall

Reference Book(s):

Title	Author(s)	Publication
Software Engineering – An	James F. Peters & Witold	Wiley
Engineering Approach	Pedrycz	
Software Engineering	IAN Sommerville	Pearson Education

Web Material Link(s):
 https://nptel.ac.in/courses/106101061/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each Tutorial and the average will be converted to 50 marks.
- Internal viva consists of 50 marks.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT2220	Software Engineering
CO 1	Cite the process of requirement gathering, classification, specification, and validation in the software engineering process.
20.0	Demonstrate an ability to design the software by applying the software engineering
CO 2	design principles.
CO 3	Discover system design patterns, and agile methodologies for the development of software using UML and Scrum.
CO 4	Devise project planning, cost estimation, and quality management techniques.
CO 5	Assess the software testing process to analyze the functionality of the application.

Mapping of CO with PO

SEIT2220	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	3	2	1	2		1						1
CO 2	3	2	3	1	2				1			1
CO 3	2	2	3	2	2				1			1
CO 4	1	2	2	3	2				2		3	1
CO 5	1	3	2	3	3							2

Mapping of CO with PSO

Tapping of do with 100								
SEIT2220	PSO1	PSO2	PSO3					
CO 1	2	1						
CO 2	3	2						
CO 3	3	3						
CO 4	2	2	2					
CO 5	2	2						

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Introduction to Software and Software Engineering	1,2
2.	Agile Development	2,3
3.	Requirement Analysis and Specification	2,3,4
4.	Structured Software Design	2,3,6
5.	Software Coding & Testing	2,3,4
6.	Quality Assurance	1,2
7.	Software Project Management	2,3,4

8.	Software	Maintenance	and	Configuration	2,3,4
	Manageme	nt			

Department of Science & Humanities

Course Code: SESH2140

Course Name: Differential Equations & Statistics

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)					
Theory	Dragtical	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03		02	05	40	60			100		200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- recall existing knowledge of calculus and apply it for solving engineering problems involving differential equations.
- introduce partial differential equations with different methods of solution.
- understand periodic functions expressed as a Fourier series and applications of Fourier series to odes.
- introduce the basic statistical data analysis and probability distribution.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Ordinary Differential Equation-I First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation Ordinary Differential Equation-II ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Nonhomogeneous ODEs, Variation of Parameters.	10	20			
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order equations, Linear and Non-liner equations of first, Higher order equations with constant coefficients, Complementary function, Particular Integrals.	07	18			
3.	Fourier Series Periodic function, Euler Formula, Arbitrary Period, Even and Odd function, Half-Range Expansions	05	12			
	Section II					
Module No.	Content	Hours	Weightage in %			
4.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Cross-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation.	07	15			

5.	Correlation & Regression Analysis Regression Analysis, Regression line and regression coefficient, Karl Pearson's method.	07	15
6.	Probability Distribution Introduction, Conditional probability, independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Normal distribution, Hypothesis.	09	20
	TOTAL	45	100

List of Tutorial(s):

Sr. No.	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	02
2.	Ordinary Differential Equation-2	02
3.	Ordinary Differential Equation-3	04
4.	Partial Differential Equation-1	02
5.	Partial Differential Equation-2	04
6.	Fourier Series-1	02
7.	Fourier Series-2	02
8.	Basics of Statistics-1	02
9.	Basics of Statistics-2	02
10.	Correlation & Regression Analysis	02
11.	Probability-1	02
12.	Probability-2	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Advanced Engineering	Erwin Kreyszig	Wiley India Pvt. Ltd.
Mathematics		New Delhi.
Probability and Statistics	Richard A. Johnson	Pearson India
for Engineers	Irwin Miller, John Freund	Education
		Services Pvt. Ltd.,
		Noida.

Reference Book(s):

Title	Author(s)	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New
		Delhi
Advanced Engineering	R. K. Jain	Narosa Publishing House
Mathematics	S.R.K. Iyengar	New Delhi.
Differential Equations for	Steven Holzner	Wiley India Pvt. Ltd., New
Dummies		Delhi.
Higher Engineering Mathematics	H.K. Dass	S. Chand & Company Ltd.,
	Er. Rajnish Verma	New Delhi.

Web Material Link(s):

- http://nptel.ac.in/courses/111105035/
- http://nptel.ac.in/courses/111106100/
- http://nptel.ac.in/courses/111105093/
- http://nptel.ac.in/courses/111108081/
- http://nptel.ac.in/courses/111105041/1

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of the performance of tutorial, which will be evaluated out of 10 per each tutorial and average of the same will be converted to 50 marks.
- Assignment consists of 20 marks.
- Internal viva consists of 30 marks.

Course Outcome(s):

After completion of the course, the students will be able to

Tireer compression	of the course, the students will be able to
SESH2140	DIFFERENTIAL EQUATIONS & STATISTICS
CO 1	Describe 1st and 2nd order ODEs and PDEs.
CO 2	Classify differential equations and evaluate linear & non-linear partial differential
CO Z	equations.
CO 3	Demonstrate Fourier series to study the behavior of periodic functions and their
60.3	applications in system communications, digital signal processing and field theory.
CO 4	Elaborate analysis of categorial data and quantitative data.
CO 5	Adapt the knowledge of various probability distribution and their applications in
LU 5	mathematical models, sport strategies and insurance.

Mapping of CO with PO

SESH2140	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	2	1									3
CO 2	3	2	1									3
CO 3	3	2	1									3
CO 4	2	1	1									1
CO 5	2	1	1									1

Mapping of CO with PSO

SESH2140	PSO1	PSO2	PSO3
CO 1	2	1	
CO 2	2	1	
CO 3	2	1	
CO 4	2		1
CO 5	1		

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Ordinary Differential Equation	1, 2, 3, 5
2.	Partial Differential Equation	1, 2, 4, 5
3.	Laplace Transform	1, 2, 4, 5
4.	Fourier Series & Fourier Integral	1, 2, 3, 4, 5
5.	Basics of Statistics	1, 2, 3, 4, 5
6.	Probability Distribution	1, 2, 3, 4, 5

Department of Computer Engineering

Course Code: SECE2231

Course Name: Computer Organization

Prerequisite Course(s): NIL

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Γ,	Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	rial	Total
	Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
	03	02		04	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide a comprehensive knowledge of overall basic computer hardware structures.
- learn architectures of various internal and external input output systems.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Basic Computer Organization and Design Data Representation: Decimal, Binary, Octal and Hexadecimal numbers, Instruction codes, Computer registers, Computer Instructions, Timing and Control, Instruction cycle Memory-Reference Instructions, Input-output and interrupt, Design of Accumulator Unit.	06	15				
2.	Programming the Basic Computer Introduction Machine Language, Assembly Language, Assembler, Program loops, Programming Arithmetic and bicoperations, subroutines, I-O Programming.	05	08				
3.	Computer Arithmetic Introduction, Addition and subtraction, Multiplication and Division Algorithms, Floating Point Arithmetic.	06	12				
4.	Central Processing Unit Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation, Program Control, Reduced Instruction Set Computer (RISC).	06	15				
	Section II						
Module No.	Content	Hours	Weightage in %				

5.	Pipeline Control and Parallel Processing Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline Hazards, Pipeline Performance, RISC Pipeline.	08	20
6.	Input-Output Organization Types of Peripherals, Input-Output Interface, Asynchronous Data	06	15
	Transfer, Modes of Transfer, Priority Interrupt, DMA		
7.	Memory Organization Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory.	08	15
	TOTAL	45	100

Sr	Name of Practical	Hours
No		
1.	Study and implement programs on number system	08
2.	Study and implement programs on conversion	04
3.	Study and build different logic gates using Logisim.	04
4.	Study and build different circuits using Logisim.	14
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Computer System Architecture	M. Morris Mano	Pearson
Structured Computer Organization, 6th	Andrew S. Tanenbaum and Todd	PHI
Edition	Austin	

Reference Book(s):

Title	Author/s	Publication
Computer Architecture & Organization	M. Murdocca & V. Heuring	WILEY
Computer Architecture and Organization	John Hayes	McGrawHill

Web Material Link(s):

https://nptel.ac.in/courses/106106092/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, whichwill be converted out of 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 marks per each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

SECE2231	COMPUTER ORGANIZATION
CO 1	Describe the design and working of basic components used to build computer
COT	system.
	Visualize and understand the working of cpu, different instruction formats,
CO 2	addressing modes, pipeline and vector processing and evaluate the performance of
	pipeline approach.
CO 3	Describe the requirements of different memories and evaluate memory
CO 3	management techniques.
CO 4	Examine the working mechanism of input and output devices and information
CO 4	transfer.

Mapping of CO with PO

SECE2231	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	3	3	1	1	2	2	2		1		1	1
CO 2	3	2	1			1		2	2	1	2	2
CO 3	3	2	1	1	2		1		2	1	2	
CO 4	3	2	1		3				2	2	3	1

Mapping of CO with PSO

SECE2231	PSO1	PSO2	PSO3
CO 1	3	2	1
CO 2	3	2	2
CO 3	3	3	2
CO 4	3	3	3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basic Computer Organization and Design	2,4
2	Programming the Basic Computer	2,3,4
3	Computer Arithmetic	2,4.5
4	Central Processing Unit	1,2,5
5	Micro-programmed Control	1,2
6	Pipeline and Vector Processing	2,5
7	Input-Output Organization	2,3,4
8	Memory Organization	2,5,6
9	Multiprocessors	2

Department of Computer Engineering

Course Code: SECE2240

Course Name: Computer Networks

Prerequisite Course(s): Discrete Mathematics, Data and File Structures

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Theory Dragtical Tytopial		torial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the communication network design.
- understand state-of-the-art in network protocols, architectures.
- learn to develop an understanding of different components of computer networks, various protocols, technologies and their applications.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction Overview of network and data communication, types of Networks, Network Topology, Protocol hierarchies, and design issues of layers Interfaces, and services. Reference Model: The OSI reference model, TCP/IP reference model, network standards.	04	10		
2.	Physical Layer Transmission media, Data and transmission techniques, Multiplexing, Asynchronous Communication, Wireless transmission, ISDN, ATM, Cellular Radio, Switching techniques issues.	07	15		
3.	Data Link Layer Layer design issues, services provided to network layers, Framing, Error control, and Flow control, Data link control and protocols – Simplex protocol, sliding window protocol, Utopia, Stop N Wait, Automatic Repeat Request. Go Back N, Selective Repeat Protocols.	07	15		
4.	Medium Access Sub Layer Channel Allocations, Multiple Access protocols- ALOHA, CSMA, CSMA/CD protocols, Collision-free protocols, Limited contention protocols, LAN architectures, IEEE 802 and OSI, Ethernet (CSMA/CD), Bus, Token Ring, DQDB, FDDI, Bridges and recent developments.	05	10		
	Section II				
Module No.	Content	Hours	Weightage in %		
5.	Network Layer A network Layer design issue, Routing algorithms, and protocols – OSPF, BGP, RIP, Congestion Control Algorithms, Internetworking – IPV4 & IPV6, Addressing, N/W Layer Protocols, and subnets.	09	20		
6.	Transport Layer Transport services, Design issues, transport layer protocols – TCP & UDP, Congestion Control, QOS and its improvement.	07	15		

7.	Application Layer Client-Server Model, WWW, HTTP, DNS, DHCP, FTP, and Email Protocol – IMAP, POP3, SMTP	06	15
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	To study and prepare LAN cables (cross and straight) using crimping tool, to	02
	configure LAN.	
2.	To study and Physical examine different network device and their usage.	02
3.	Configure switch and router in small network and identify the difference.	02
4.	To Study of network IP – IPv4 & IPv6.	02
5.	Configure Network Topology using Cisco Packet tracer.	04
6.	To monitor network traffic using Wire Shark	02
7.	To get the MAC or Physical Address of the system Using Address Resolution	02
	Protocol.	
8.	To Configure network using Routing Information Protocol (RIP)	04
9.	To configure network state routing protocol (OSPF).	02
10.	To configure Border Gateway Protocol.	02
11.	To configure Application Layer protocols: DHCP and DNS and understand	02
	its functionality in Wireshark/ Packet tracer.	
12.	Understand functionality of TCP & UDP using Wireshark/ Packet Tracer.	02
13.	Understand functionality of HTTP & FTP using Wireshark/ Packet Tracer.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Data Communication and	Behrouz A. Forouzan	Tata McGraw Hill
Networking		

Reference Book(s):

Title	Author(s)	Publication
Computer Networks	Andrew S Tanenbaum	PHI Learning
Data and Computer	William Stallings	Prentice Hall
Communications		
TCP/IP Illustrated Volume-I	Kevin R. Fall, W.Richard	Addition Wesley
	Stevens	-
Internetworking with TCP/IP	Douglas E. Comer	PHI
Volume-I		

Web Material Link(s):

- https://www.udemy.com/new-2016-networking-fundamentals-for-beginners/
- https://www.cisco.com/c/en_in/training-events/training-certifications/certifications.html
- http://www.tutorialspoint.com/computer fundamentals/computer networking.html
- https://nptel.ac.in/courses/106105080/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE2240	COMPUTER NETWORKS			
CO 1	Distinguish the working of network protocols, application and OSI reference model			
and TCP/IP reference model.				
60.2	Comprehend functionality of various protocols and algorithms with various			
CO 2	architecture layer.			
CO 3	Design computer network configuration.			
CO 4	Recognize the technological trends of Computer Networking			

Mapping of CO with PO

SECE2240	PO1	PO2	P03	PO4	PO5	P06	P07	P08	P09	P010	PO11	PO12
CO 1	2	1	1	1	2		2			3		1
CO 2	3	1	1	2	1		3	1		3		2
CO 3	2	2	2		1		3		1	2		3
CO 4		2	2	1	1	2	2			2		3

Mapping of CO with PSO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
SECE2240	PSO1	PSO2	PSO3
CO 1	2	3	3
CO 2	3	3	2
CO 3	3	3	3
CO 4	3	3	2

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction	2,4
2.	Physical Layer	1,2,4
3.	Datalink Layer	2,4
4.	Medium Access Layer	1,2
5.	Network Layer	2,3,5,6
6.	Transport Layer	2,4
7.	Application Layer	2,5

Department of Computer Engineering

Course Code: SEIT2230

Course Name: Operating System

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total	
				CE	ESE	CE	ESE	CE	ESE	Total	
03	02		04	40	60	40	60			200	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To provide a fundamental understanding of the operating system functions, architecture, services, and interconnections among services within operating systems.

course co	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Operating System Basics of Operating System: Definition, Types of Operating System, Operating System Structure, Operating System Services, Concept of Virtualization.	03	07
2.	Processes and Threads Management Concept of Process: Definition, Process State, Process State Transition, Process Control Block, CPU Scheduling: CPU-I/O Burst Cycle, Types of Schedulers, Context Switching, Preemptive and Non- Preemptive Scheduling, Scheduling Criteria, Process Scheduling Algorithms: FCFS, SJF, Priority, Round- Robin, Multilevel Queue, and Lottery Scheduling; Threads, Types of Threads, Multithreading	09	20
3.	Inter Process Communication Race Conditions, Critical Regions, Mutual Exclusion with Busy Waiting, Sleep and Wakeup, Semaphores, Mutexes, Monitors, Message Passing, Classical IPC Problems: The Dining Philosopher Problem, The Readers and Writers Problem	07	15
4.	Deadlocks Resources, Conditions for Deadlocks, Deadlock Modelling, , Deadlock Detection and Recovery, Deadlock Avoidance, Deadlock Prevention.	04	08
	Section II	Т	
5.	Memory Management Main memory: Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging: Introduction to Paging, Translation look-aside buffer (TLB), Structure of Page Table, Virtual memory: Background, Demand Paging, Page Replacement Algorithms: FIFO, Optimal Page Replacement, Least Recently Used, Not Recently Used, Second Chance Page Replacement, Thrashing.	11	25
6.	File Management File Concepts: File Types, File Attributes, File Access Methods, File Operations, Directories: Directories Structure, Path Types, Directory Operations; File Allocation Methods: Contiguous, Linked, Indexed Allocation.	05	12

	Disk Management		
7.	Disk structure, Disk Scheduling Algorithms: FCFS, SSTF, SCAN, C-	06	13
	SCAN, LOOK, C-LOOK, Disk Free Space Management, RAID Levels.		
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Study of basic commands of Linux.	02
2.	Study of Advance commands and filters of Linux/UNIX.	02
3.	Write shell scripts to perform several computations like add numbers, subtract numbers, find average, percentage. Also find factorial of a given number. Generate	04
	Fibonacci series etc.	
4.	Simulate any two CPU scheduling algorithms. (E.g. FCFS, SJF, Round Robin etc.)	04
5.	Simulate any two contiguous memory allocation techniques. (E.g. Worst-fit, Best-fit, Next-fit, First-fit)	04
6.	Simulate banker's algorithm for deadlock avoidance.	04
7.	Simulate any two page replacement algorithms. (E.g. FIFO, LRU, Optimal)	04
8.	Simulate any two disk scheduling algorithms. (E.g. FCFS,SCAN,C-SCAN)	04
9.	Case studies: OS in Industries, Protection and Role-based Access Controls of OS.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Operating System Principles	Silberschatz A., Galvin P. and Gagne G	Wiley
Modern Operating System	Andrew S. Tanenbaum	Pearson

Reference Book(s):

Title	Author(s)	Publication
Operating Systems: Internals and	William Stallings	Pearson
Design Principles		
UNIX and Shell Programming	Behrouz A. Forouzan, Richard	Cengage Learning
	F. Gilberg	
Operating Systems	Dhamdhere D. M	Tata McGraw Hill

Web Material Link(s):

https://nptel.ac.in/courses/106106144

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted out of 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 Marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT2230	OPERATING SYSTEM

CO 1	Understand the basic principles of operating system.
CO 2	Illustrate the concepts of operating systems services and its components.
CO 3	Evaluate the performance of operating system algorithms and achieve a comprehensive understanding of memory management during process execution.
CO 4	Comprehend how an operating system manages file systems, mass storage, and I/O operations.

Mapping of CO with PO

<u> </u>												
SEIT2230	P01	PO2	P03	PO4	PO5	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	2	1				1			1		1
CO 2	2	2	2	1	2					2		2
CO 3	3	3	3	3	3		2	1		2		2
CO 4	3	3	3	2	3	1		1	2	3	2	3

Mapping of CO with PSO

SEIT2230	PSO1	PSO2	PSO3
CO 1	3	2	1
CO 2	2	2	1
CO 3	3	3	2
CO 4	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Operating System	1, 2, 4
2.	Processes and Threads Management	1, 2, 3, 5, 6
3.	Inter Process Communication	2, 3, 4, 5
4.	Deadlock	2, 3, 4, 6
5.	Memory Management	1, 2, 3, 4, 6
6.	File Management	1, 2, 3
7.	Disk Management	1, 2, 3, 4, 5

Department of Information Technology

Course Code: SEIT2241

Course Name: Mobile Application Development

Prerequisite Course(s): -- Object Oriented Programming with Java (SEIT2010)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)													
Theory	Dragtical	Due stice Tutorial Cus		1 Tutorial Credit		Practical Tutorial Credit		The	eory	Prac	ctical	Tute	orial	Total			
Theory	Practical	Tutoriai	Tutorial	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Credit	utoriai Credit	CE	ESE	CE	ESE	CE	ESE	Total
	04	00	02	1		40	60		ŀ	100							

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand life cycle of an application/activity.
- Learn design of responsive mobile applications.
- Develop mobile application using open-source technologies.

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Create Hello World Application.	02
2.	Create an application to perform addition, subtraction, multiplication, division	02
	operation on given two numbers entered by user.	
3.	Create an application to convert temperature from Fahrenheit to Celsius.	02
4.	Create a login application to validate Email ID and Password. Display Toast	04
	Message on successful login or error message if not login.	
5.	Create an application UI component: Image Button, Toggle button, Progress Bar,	08
	Spinner, Date Picker, Time Picker, Seek Bar , Switch, Rating Bar.	
6.	Create an application that will change color of the screen, based on selected	04
	options from the menu.	
7.	Create an UI such that, one screen have list of all friends. On selecting of any	04
	name, next screen should show details of that friend like Name, Image, Interest,	
	Contact details etc.	
8.	Create an android app to draw red color circle & blue color rectangle using paint	04
	& canvas class.	
9.	Create an app to send SMS and email.	06
10.	Create an application that will play a media file from the memory card.	04
11.	Create application using Google speech API.	06
12.	Create an application to make Insert, Update, and Delete operation on the	04
	database.	
13.	Android Studio Setup for flutter Development	04
14.	Create an application to demonstrate Dialogs & Expansion tile card in a flutter	06
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Introduction to Android Application	Joseph Annuzzi Jr., Lauren Darcey,	Pearson
Development	Shane Conder	Education
Beginning Android 4 Application	Wei Meng Lee	Wrox
Development		

Reference Book(s):

Title	Author(s)	Publication
Android Application Development	Donn Felker	Wiley Publication
for Dummies, 3 rd Edition		

Web Material Link(s):

• https://nptel.ac.in/courses/106106156/

Course Evaluation:

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT2241	MOBILE APPLICATION DEVELOPMENT
CO 1	Develop user friendly mobile applications by implementing different practicals.
CO 2	Understand the concepts of front-end development using various technologies
CO 3	Analyze and implement frameworks, database and design patterns in mobile applications.
CO 4	Create a small but realistic working mobile application using different application programming interface.

Mapping of CO with PO

<u> </u>												
SEIT2241	PO1	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	1	2	1	1	3	2			1	2	1	1
CO 2	2	1	2	2	3	2	1		1	1	1	2
CO 3		2	3	2	3	2		1	1	2	2	3
CO 4	3	3	3	2	3	3			3	3	3	3

Mapping of CO with PSO

SEIT2241	PSO1	PSO1 PSO2			
CO 1	2	1	1		
CO 2	2	3	1		
CO 3	3	3	3		
CO 4	3	3	3		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Practical	Content	RBT Level
No		
1.	Introduction of Android	1,2,3
2.	Android Application Design and Resource	2,3,4
3.	Exploring User Interface Screen Elements	2,3,4
4.	Designing User Interfaces with Layouts	2,3,6
5.	Working with Widgets & Control	2,4,5,6
6.	Drawing & Working with Animation	3,4,6
7.	Designing Application , Working with Android	2,6

	Manifest file	
8.	Canvas & Paint Class, Multimedia APIs.	1,2,6
9.	Networking APIs, Android Web APIs.	1,2,5,6
10.	Working with Media Controller.	2,3
11.	Working with Speech to Text & Text to Speech.	3,6
12.	Storage APIs, Working with Database.	4,3,6
13.	Cross Platform Mobile Application using flutter.	2,3
14.	Demonstrate UI Components in flutter	2,3,6

THIRD YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. BATCH: 2023 COMPUTER SCIENCE ENGINEERING (ML & AI)

			2	0.66	Teaching Scheme						Examination Scheme						
Sem	Course Code	Course Title	Course Category	Offered By		Contact 1	Hours		Credit	The	ory	Prac	tical	Tut	orial	Total	
	Gouc		dategory	29	Theory	Practical	Tutorial	Total		CE	ESE	CE	ESE	CE	ESE		
	SEML3211	Foundation of Machine Learning	Major/Core	ML	2	2	0	4	3	40	60	40	60	0	0	200	
	SEML3220	R Programming	Major/Core	ML	0	4	0	4	2	0	0	40	60	0	0	100	
	SEIT3270	Web Technologies	Major/Core	IT	3	2	0	5	4	40	60	40	60	0	0	200	
5	SECE4221	Artificial Intelligence	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
		Elective-I	Minor		2	2	0	4	3	40	60	40	60	0	0	200	
		Language Training Elective Course	AEC	CFLS	3	0	0	3	3	100	0	0	0	0	0	100	
		Life Skill Elective Course-I	VAC	CLSC	2	0	0	2	2	100	0	0	0	0	0	100	
	SEML3910	Summer Training	Minor	CSE	0	4	0	0	4	0	0	100	0	0	0	100	
							Total	27	25							1200	
	SECE3231	Cloud Computing & Applications	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	SECE3241	Artificial Intelligence of Things	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	SECE4211	Machine Learning	Major/Core	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	SECE3560	Project-I	Minor	CE	0	3	0	3	3	0	0	100	0	0	0	100	
6		Elective-II	Minor		2	2	0	4	3	40	60	40	60	0	0	200	
	TNPC3010	Corporate Grooming & Etiquette	SEC	TNPC	3	0	0	3	3	100	0	0	0	0	0	100	
	SECE3490	MOOC Course / University Elective	SEC		3	0	0	3	3	100	0	0	0	0	0	100	
		Life Skill Elective Course-II	VAC	CLSC	2	0	0	2	2	100	0	0	0	0	0	100	
							Total	30	26							1200	

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. BATCH: 2023 COMPUTER SCIENCE ENGINEERING (ML & AI) – ELECTIVE COURSES

			Course Category		Teaching Scheme Examination Scheme											
Sem	Course Code	Course Title		Offered By		Contact Hours				Theory		Practical		Tutorial		T-4-1
	douc			2,	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SEIT3620	Data Visualization	Minor	IT	2	2	0	4	3	40	60	40	60	0	0	200
5	SEML3610	3D Modeling and Rendering	Minor	ML	2	2	0	4	3	40	60	40	60	0	0	200
3	SEIT3630	Image Processing	Minor	IT	2	2	0	4	3	40	60	40	60	0	0	200
	SECE3630	Wireless Network & Mobile Computing	Minor	CE	2	2	0	4	3	40	60	40	60	0	0	200
	SEML3620	Optimization Techniques	Minor	ML	2	2	0	4	3	40	60	40	60	0	0	200
	SEML3630	Business Analytics	Minor	ML	2	2	0	4	3	40	60	40	60	0	0	200
	SECE3620	Service Oriented Computing	Minor	CE	2	2	0	4	3	40	60	40	60	0	0	200
6	SECE3650	Blockchain Technology	Minor	CE	2	2	0	4	3	40	60	40	60	0	0	200
	SEIT3640	Advanced Web Technologies	Minor	IT	2	2	0	4	3	40	60	40	60	0	0	200
	SEIT3650	Augmented Reality & Virtual Reality	Minor	IT	2	2	0	4	3	40	60	40	60	0	0	200

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3211

Course Name: Foundation of Machine Learning

Prerequisite Course(s): Differential Equations & Statistics (SESH2140)

Teaching & Examination Scheme:

Tead	ching Scheme	e (Hours/We	eek)	Examination Scheme (Marks)						
Theory Prac	Dragtical	Tutorial	Credit	The	Theory		Practical		Tutorial	
Theory	Practical	Tutoriai		CE	ESE	CE	ESE	CE	ESE	Total
2	2	0	3	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic concepts of machine learning and its comparison with human learning, covering types, tools, and applications.
- To equip students with skills to prepare and preprocess data for machine learning models, ensuring data quality and effective feature engineering.
- develop logic building and problem-solving skills.

Course Content:

Section I										
Module No.	Content	Hours	Weightage in %							
1.	Introduction to Machine Learning: What is human learning? What is Machine Learning? Human learning versus machine learning, Types of machine learning, Issues of Machine Learning, Real World applications of Machine Learning.	06	20							
2.	Data Preprocessing and Feature Engineering:Data Preprocessing, Feature Scaling: Standardization, normalization,FeatureSelection: Filter, wrapper and embedded methods,Dimensionality Reduction: PCA(Principal Component Analysis)	07	25							
3.	3. Example of Supervised Learning, Classification Model, Classification Learning Steps, KNN algorithm, Naive Bayes Algorithm									
	Section II									
Module No.	Content	Hours	Weightage in %							
4.	Unsupervised Learning: Unsupervised Learning versus Supervised Learning, Applications of Unsupervised Learning, Clustering, Classification vs Clustering, Finding Pattern using Association Rules, K-means Clustering algorithm, EM Algorithm.	08	30							
5.	Modelling and Evaluation: Bias-Variance Tradeoff: Underfitting vs Overfitting, Cross-validation: K-fold cross-validation, Selecting a Model, Evaluation Metrics	04	05							
	TOTAL	30	100							

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Introduction of various applications of Machine Learning.	02

2.	Implementation of different distance measures.	02
3.	Introduction to Python for ML(Numpy, Pandas and matplotlib) for data operations.	02
4.	Data Preprocessing: Handle missing data, outliers, encode features.	04
5.	Generate statistics and visualize data distribution.	04
6.	Implement k-NN, evaluate using accuracy, precision, recall, F1 Score.	04
7.	Implement Gaussian Naïve Bayes and evaluate classification performance.	04
8.	Implement K-Means, determine optimal clusters using the Elbow Method.	04
9.	Implement Expectation Maximization algorithm.	02
10.	Perform cross-validation and hyperparameter tuning.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Machine Learning	Saikat Dutt, Subramanian	Pearson Education
	Chandramouli, Amit Kumar Das	
Machine Learning	Tom M Mitchell	McGraw Hill

Reference Book(s):

Title	Author(s)	Publication
Machine Learning	Anuradha Srinivarasaraghavan,	Wiley India
	Vincy Joseph	

Web Material Link(s):

- https://onlinecourses.nptel.ac.in/noc21 cs24/preview
- https://www.youtube.com/watch?v=r4sgKrRL2Ys&list=PLVedk3nRvxDScQQpgMS6PBqV2lEeXJSL
 i

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEML3211	FOUNDATION OF MACHINE LEARNING
CO 1	Understand the fundamentals of Machine Learning
CO 2	Prepare data for machine learning models
CO 3	Model selection, training, and evaluation
CO 4	Implement supervised learning techniques
CO 5	Explore unsupervised learning approaches

Mapping of CO with PO

FF8												
SEML3211	PO1	PO2	P03	PO4	PO5	P06	P07	P08	P09	P010	P011	PO12
CO 1	1	1										
CO 2	2	2	1	1	1							
CO 3	1	1	1	1	1							
CO 4	1	2	1	1	1							
CO 5	1	1	1	1	1							

Mapping of CO with PSO

SEML3211	PSO1	PSO2	PSO3
CO 1	2		
CO 2	1	1	
CO 3	1	2	1
CO 4	2	1	1
CO 5	2	2	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Introduction to Machine Learning	1,2
2.	Data Preprocessing and Feature Engineering	1,2,3
3.	Supervised Learning	2,3,4,5
4.	Unsupervised Learning	2,3,4,5
5.	Modelling and Evaluation	2,3,4,6

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3220 Course Name: R Programming Prerequisite Course(s): --

Teaching & Examination Scheme:

Tead	ching Scheme	cheme (Hours/Week) Examination Scheme (Marks)								
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	04	00	04	00	00	40	60	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basics in R programming in terms of constructs, control statements, string functions, etc.
- design and write efficient programs using R, to perform routine and specialized data manipulation/management and analysis tasks.
- identify and use available R packages and associated Open-Source software to meet given scientific objectives.
- handle all aspects of Data analysis (exploring, summarizing, statistical analyzing, visualizing).

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Install R and RStudio, explore the R environment, and configure essential settings.	03
2.	Demonstrate the creation and manipulation of variables and objects in R, including arithmetic operations.	03
3.	Create and manipulate vectors and lists, including operations like sorting and filtering.	04
4.	Demonstrate matrix operations (addition, multiplication) and array manipulations.	05
5.	Create data frames, perform operations like filtering, subsetting, merging, and reshaping.	05
6.	Write programs using decision-making structures and loops for control flow.	04
7.	Demonstrate methods for handling NA and NULL values, and converting data types.	03
8.	Work with dates and times using base functions and specialized packages.	03
9.	Perform basic string manipulations and explore advanced operations with string packages.	04
10.	Create custom functions with parameter handling and lazy evaluation concepts.	04
11.	Read and write data in various formats (CSV, Excel, JSON) and explore data- cleaning techniques.	04
12.	Perform advanced data manipulation tasks like filtering, summarizing, and joining with dplyr().	04
13.	Create basic visualizations (bar chart, histogram, scatter plot) using base R graphics.	05
14.	Design advanced plots using ggplot2, including custom themes and multiple charts on a single layout.	05
15.	Perform basic statistical analyses (mean, median, correlation) and use debugging tools (traceback(), browser()).	04
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
R for Everyone: Advanced Analytics	Jared P. Lander	Addison-Wesley
and Graphics		-
The Art of R Programming: A Tour	Norman Matloff	No starch Press
of Statistical Software Design		

Reference Book(s):

Title	Author(s)	Publication
Beginning R – The Statistical	Mark Gardener	Wiley
Programming Language		
R Programming for Data Science	Roger D. Peng	Leanpub

Web Material Link(s):

- https://onlinecourses.nptel.ac.in/noc19 ma33/preview
- https://onlinecourses.nptel.ac.in/noc23 ma96/preview

Course Evaluation:

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEML3220	R Programming
CO 1	Perform simple arithmetic and statistical operations in r and read data files into r.
CO 2	Apply family of functions for subsetting and basic computations and solve real world problems.
CO 3	Get familiar with r data structures, especially vectors and data frames and perform data manipulation on data frames.
CO 4	Recall the basic principles of r programming students can able to handle all aspects of data analysis.

Mapping of CO with PO

SEML3220	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	3	3	2	2	3	1	1	1	1	2	1	2
CO 2	3	3	2	3	3	1	1	1	2	3	2	3
CO 3	3	3	3	3	3	2	2	1	3	3	2	3
CO 4	3	3	3	3	3	3	3	2	3	3	3	3

Mapping of CO with PSO

ampping of our minima to						
SEML3220	PSO1	PSO2	PSO3			
CO 1	3	2	2			
CO 2	1	3	3			
CO 3	3	3	3			
CO 4	2	2	3			

69

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Install R and RStudio; understand the R	1,2
	Environment	
2.	Introduction to R objects and variables	1,2
3.	Working with vectors and lists	2,3
4.	Matrix and array operations	2,3
5.	Data frames: creation and operations	3,4
6.	Decision making and loops	4
7.	Handling missing and special data	3,4
8.	Date and time in R	2,3,4
9.	String operations and manipulations	3,4
10.	User-defined functions	4,5
11.	Data import and export	2,3,4
12.	Data manipulation with dplyr	3,4,5
13. Introduction to data visualization		1,2,3
14.	Advanced data visualization with ggplot2	5,6
15.	Statistics and debugging in R	4,5

Department of Information Technology

Course Code: SEIT3270

Course Name: Web Technologies

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	4	0	5	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic components of a computer system.
- identify an appropriate approach to computational problems.
- develop logic building and problem-solving skills.

Course Content:

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Introduction to Web Design: Concept of WWW, Internet and WWW, HTTP Protocol: Request and Response, Web browser and Web servers, Concepts of effective web design, Web design issues including Browser, Display resolution, Page Layout and linking, User centric design, Sitemap, Planning and publishing website, Designing effective navigation	07	20			
2.	HTML: Basics of HTML, formatting and fonts, commenting code, color, hyperlink, lists, tables, images, forms, XHTML, Meta tags, Character entities, frames and frame sets, Browser architecture and Web site structure. Overview and features of HTML5	08	20			
3.	Style sheets: Need for CSS, introduction to CSS, basic syntax and structure, using CSS, background images, colors and properties, manipulating texts, using fonts, borders and boxes, margins, padding lists, positioning using CSS, CSS2, Overview and features of CSS3	07	10			
	Section II					
Module No.	Content	Hours	Weightage in %			
4.	JavaScript: Client side scripting with JavaScript, variables, functions, conditions, loops and repetition, Pop up boxes, Advance JavaScript: Javascript and objects, JavaScript own objects, the DOM and web browser environments, Manipulation using DOM, forms and validations, DHTML: Combining HTML, CSS and Javascript, Events and buttons.	08	20			
5.	PHP: Introduction and basic syntax of PHP, decision and looping with examples, PHP and HTML, Arrays, Functions, Browser control and detection, string, Form processing, Files, Advance Features: Cookies and Sessions, Object Oriented Programming with PHP	08	20			

6.	MySQL: Basic commands with PHP examples, Connection to server, PHP my admin and database bugs	07	10
	TOTAL	45	100

Sr. No.	Name of Practical	Hours
1.	Design web a page for the department timetable containing a suitable header,	04
	footer, description of the course codes and titles, faculty name and initialises, etc.,	
	use href, list tags and add University logo as a background. Using table tag and	
	additional features like spanning rows, columns and table borders. [Refer your	
	class timetable]	
2.	a) Create a form to collect Student feedback. (Use textbox, text area, checkbox,	06
	radio button, select box etc.).	
	b) Create a web page using frame. Divide the page into two parts with Navigation	
	links on left hand side of page (width=20%) and content page on right hand side of	
	page (width = 80%). On clicking the navigation Links corresponding content must	
	be shown on the right-hand side.	
3.	Create a web page using frame. Divide the page into two parts with Navigation	04
	links on left hand side of page (width=20%) and content page on right hand side of	
	page (width = 80%). On clicking the navigation Links corresponding content must	
	be shown on the right-hand side.	
4.	Write HTML code to develop a webpage having two frames that divide the webpage	04
	into two equal rows and then divide the row into equal columns fill each frame with	
	a different background colour.	
5.	Create your resume using HTML tags also experiment with colors, text (bold, italic	02
	and different headings), image, link, size and also other related tags.	
6.	Design a web page using CSS with suitable design for the following:	06
	i.Demonstrate different font styles	
	ii.Control the repetition of image with background-repeat property	
	iii.Define style for links as a: link, a: active, a: hover, a: visited	
	iv. Demonstrate Element visibility property	
7.	Design a web page of your institute with an attractive background color, text color,	04
	an Image, font etc. (use internal CSS). Use External CSS to format the class	
	timetable.	
8.	Develop simple calculator for Addition, Subtraction, Multiplication and Division	06
	operation using JavaScript.	
	a) Create HTML Page that contains form with fields Name, Email, Mobile No,	
	Gender, Favorite Color and a button. Write a JavaScript code to validate all the	
	fields when the button is clicked, later combine and display the information in	
	textbox.	
9.	Write an XHTML document which displays a form containing text elements to input	08
	register number, sub-code, marks in three tests and a button element. Also write	
	Java script compute the average of two best tests on click of button and print	
	average marks using alert. Validate all the fields using JavaScript.	
10.	a) Write a PHP script to display today's date in dd-mm-yyyy format.	06
10.	b) Write a PHP script to check whether the number is prime or not when user input	
	a valid number from client side.	
11.	Create HTML page that contain textbox, submit / reset button. Write PHP script to	04
11.	display this information and also store into a text file.	04
12.		06
14.	Write a PHP script for login authentication. Design an HTML form which takes	06
	Username and Password from user and validate against stored Username and	
	Password in a file.	60
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Web Design with HTML, CSS,	by Jon Duckett	Wiley-India
JavaScript and jQuery		·

Reference Book(s):

Title	Author(s)	Publication
Web Technologies: HTML,	Kogent Learning Solutions Inc.	Dreamtech Press
JAVASCRIPT, PHP, JAVA, JSP, XML		
and AJAX, Black Book		
Developing Web Applications	Ralph Moseley and M. T.	Wiley-India
7-7	Savaliya	

Web Material Link(s):

• Web Technology PDF Download | WT Books, Lecture Notes, Studymaterial

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT3270	WEB TECHNOLOGIES
CO 1	Understand the fundamental concepts of web technologies
CO 2	Understand and implement client-side and server-side programming
CO 3	Learn HTML, CSS, and JavaScript for web page development
CO 4	Work with databases for dynamic web applications

Mapping of CO with PO

SEIT3270	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1	1											
CO 2	1		1									
CO 3					1							
CO 4				1								
CO 5							1					

Mapping of CO with PSO

SEIT3270	PSO1	PSO2	PSO3
CO 1	1		
CO 2		1	
CO 3	1		

CO 4	1		
CO 5		1	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Web Design	1,2
2.	HTML	1,2,3
3.	Style sheets	3,4
4.	JavaScript	2,3,4
5.	PHP	2,3
6.	MySQL	2,3

Department of Computer Engineering

Course Code: SECE4221

Course Name: Artificial Intelligence

Prerequisite Course(s): Data Structures (SECE2221)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	-	04	40	60	40	60	-	ı	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basics of AI
- develop roles in future and also introduce the intelligence of machine
- design AI

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to AI The AI Problems, The Underlying Assumption, AI techniques, AI Technique, The AI Problems and applications, Major areas of Artificial Intelligence, History of AI.	02	05
2.	Problems, State Space Search & Heuristic Search Techniques: Defining the Problems as a State Space Search, Production Systems: control & search strategies, Depth first and Breadth first search, Hill Climbing, Best first search, A* algorithm	07	15
3.	Knowledge Representation Representations and Mappings, Approaches to Knowledge Representation, Using Propositional logic and Predicate Logic, Resolution, Semantic network, Frame based knowledge, Procedural Versus Declarative Knowledge, Forward Reasoning, Backward Reasoning. Symbolic Reasoning, Under Uncertainty: Non-Monotonic Reasoning, Logics for Non-monotonic Reasoning	09	20
4.	Introduction to Prolog Introduction, Converting English to Prolog Facts and Rules, Goals, Prolog Terminology, Variables, Control Structures, Arithmetic Operators	04	05
	Section II		
Module No.	Content	Hours	Weightage in %
5.	Uncertain Reasoning and alternatives Probability and Bayes' Theorem, Certainty Factors and Rule-Base Systems, Bayesian Networks, Dempster Shafer Theory, Fuzzy sets, Fuzzy Logic, Fuzzy systems, Hidden Markov model	08	20
6.	Game Theory Introduction to Game playing, The Minimax search procedure, Alpha-Beta procedure, Refinements, Iterative Deepening	05	10
7.	Natural Language Processing	05	10

	Introduction, Syntactic Processing, Semantic Analysis, Discourse and Pragmatic Processing, Spell Checking.		
8.	Connectionist Models Introduction to Hopfield Network, Learning in Neural Network, Application of Neural Networks, Recurrent Networks, Introduction to multilayer Neural networks	05	15
	TOTAL	45	100

Sr. No	Name of Practical	Hours
1.	Overview of Artificial Intelligence systems.	02
2.	Write a program to implement BFS (for 8 puzzle problem or Water Jug problem or any AI search problem)	02
3.	Write a program to implement DFS (for 8 puzzle problem or Water Jug problem or any AI search problem)	02
4.	Write a program to Implement A* Algorithm.	04
5.	Prolog Representation of Animals, Mammals, and Behavioral Characteristics	02
6.	Prolog Implementation of a Simple Family Tree with Relationships	02
7.	Explore different python packages which are applicable in AI.	02
8.	Write a program to construct a Bayesian network from given data.	04
9.	Write a program to infer from the Bayesian network.	02
10.	Character recognition application using python.	04
11.	NLP application using python.	04
	TOTAL	30

Text Book (s):

Title	Author/s	Publication
Artificial Intelligence: A Modern	Stuart Russell and	Pearson,4th Edition
Approach	Peter Norvig	(2020)

Reference Book (s):

Title	Author/s	Publication
Artificial Intelligence	Elaine Rich, Kevin Knight, Shivashankar B. Nair	McGraw-Hill, 3rd Edition (2008)
Neural Networks and Deep Learning	Charu C. Aggarwal	Springer, 1st Edition (2018)
Prolog Programming for Artificial Intelligence	Ivan Bratko	Addison-Wesley, 4th Edition (2011)

Web Material Link(s):

- https://nptel.ac.in/courses/106106126/
- https://nptel.ac.in/courses/106/105/106105077/
- http://www.journals.elsevier.com/artificial-intelligence/

Course Evaluation:

Theory:

- Continuous Evaluation Consist of two tests, each of 30 Marks and 1 hour of duration and average of the
- same will be converted out of 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 marks
- per each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Mini Project Contains of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

meet ene comp	ionon of the course, the fone wing course outcomes will be used to:
SECE4221	ARTIFICIAL INTELLIGENCE
CO 1	Understand the search technique procedures applied to real world problems
CO 2	Understand and use various types of logic and knowledge representation schemes.
CO 3	Use Prolog Programming language using predicate logic
CO 4	Understand various Game Playing techniques and apply them in programs
CO 5	Gain knowledge in AI Applications and advances in Artificial Intelligence

Mapping of CO with PO

SECE4221	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	3	2	3	2	1	1					1
CO 2	3	2	3	2	3	1	1					1
CO 3	2	3	3	2	3					2		1
CO 4	3	3	2	3	2	1	1					3
CO 5	3	2	2	2	3	3	3					3

Mapping of CO with PSO

SECE4221	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	3	2
CO 3	2	3	3
CO 4	2	3	3
CO 5	2	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to AI	1,2
2	Problems, State Space Search & Heuristic Search	1,2,3
	Techniques	
3	Knowledge Representation	2,3
4	Introduction to Prolog	2,5,6
5	Uncertain Reasoning and alternatives	2,3,4
6	Game Theory	5,6
7	Natural Language Processing	2,3
8	Connectionist Models	2,3,4

Department of Information Technology

Course Code: SEIT3620

Course Name: Data Visualization

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)				
Theory	Theory Practical Tutorial		Practical	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
02	02	00	03	40	60	40	60	00	00	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand Core Concepts Learn the fundamentals of data visualization and its importance in data analysis and decision-making.
- Develop Technical Skills Gain hands-on experience with tools and libraries for creating effective visualizations.
- Prepare and Transform Data Learn techniques for cleaning, processing, and integrating data for visualization purposes.
- Explore Advanced Visualization Techniques Create interactive, geospatial, and high-dimensional visualizations
- Enhance Storytelling and Presentation Build data-driven narratives and dashboards to communicate insights effectively.

Course Content:

Course Co	ontent:		
	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Data Visualization Overview of Data Visualization: Importance and role in data analysis Types of data: Quantitative, Qualitative Introduction to visual perception and human cognition in data representation Tools & Technologies Introduction to visualization tools (Tableau, Power BI, D3.js, etc.) Basic charts: Bar charts, Line graphs, Pie charts	07	25%
2.	Advanced Data Visualization Techniques Interactive Visualizations: Creating interactive dashboards and visual reports Introduction to libraries like Plotly, Bokeh, and Shiny Data Storytelling Visualizing complex datasets with a narrative approach. Effective use of annotations and interactive elements to enhance storytelling Geospatial Data Visualization Introduction to mapping and geospatial visualizations. Tools for visualizing geographical data (Leaflet, GeoPandas)	08	25%
	Section II		
Module No.	Content	Hours	Weightage in %
3.	Data Preparation for Visualization Data Cleaning & Transformation: Handling missing data, outliers, and noise, Data wrangling techniques for visualization (using Python or R) Data Integration and Aggregation: Combining data from different sources, Grouping, filtering, and summarizing data for visualization Data Types and Formats: Handling different types of data (numeric,	07	25%

	categorical, temporal) for visualization.		
4.	Advanced Visualizations & Machine Learning Integration Multivariate and High-Dimensional Visualizations: Heatmaps, scatter plots, and pair plots for multivariate analysis Visualizing high-dimensional data using PCA and t-SNE, Time-Series Data Visualization: Techniques for visualizing trends and seasonality, handling temporal data using line charts, candlestick charts, and more, Integrating Machine Learning Models with Visualizations: Visualizing results from machine learning algorithms (e.g., decision trees, clusters)	08	25%
	TOTAL	30	100%

Sr. No	Name of Practical	Hours
1	Introduction to Python Libraries for Data Visualization (Matplotlib, Seaborn,	02
	Plotly).	
2	Create basic charts—Bar Chart, Line Graph, and Pie Chart using Matplotlib and	02
	Seaborn.	
3	Design interactive dashboards using Tableau or Power BI.	04
4	Develop visualizations for categorical and numerical data using histograms and	02
	boxplots.	
5	Implement scatter plots and pair plots for multivariate data visualization.	02
6	Perform data cleaning and preprocessing for visualization using Pandas.	02
7	Build time-series visualizations to analyze trends using Matplotlib and Plotly.	02
8	Create geospatial visualizations using GeoPandas and Folium.	02
9	Develop a data storytelling dashboard with annotations and tooltips in	04
	Tableau/Power BI.	
10	Visualize machine learning results—classification boundaries and clusters using	02
	Seaborn.	
11	Design a mini-project to analyze and visualize a real-world dataset (e.g., sales	06
	data).	
	TOTAL	30

Text Book (s):

Title	Author/s	Publication	
Data Visualization: A Practical Introduction	Kieran Healy	Princeton	University
		Press.	

Reference Book (s): Mention Any Numbers of Reference Books

Title	Author/s	Publication
Storytelling with Data: A Data Visualization	Cole Nussbaumer Knaflic	Wiley
Guide for Business Professionals		
Data Visualization: Principles and Practice	Kari L. Jordan and	CRC Press
•	Alexandru C. Telea	
Core Python Programming	Wesley J. Chun	Pearson Education

Web Material Link(s):

- https://public.tableau.com
- https://learn.microsoft.com/en-us/power-bi/
- https://www.datacamp.com
- https://plotly.com/python/

Course Evaluation:

Theory:

• Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.

- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEIT3620	DATA VISUALIZATION
CO 1	Demonstrate an understanding of fundamental concepts, principles, and importance
	of data visualization in data analysis and decision-making.
CO 2	Develop proficiency in using modern visualization tools and programming libraries like
	Tableau, Power BI, Matplotlib, and Seaborn to create effective visualizations.
CO 3	Apply data preprocessing techniques, including cleaning, transformation, and handling
	different data formats, to prepare datasets for visualization.
CO 4	Design and implement advanced visualizations such as interactive dashboards,
	geospatial maps, and time-series analyses to gain insights from complex datasets.
CO 5	Create compelling data stories and dashboards to effectively communicate insights and
	support data-driven decision-making.

Mapping of CO with PO

mapping of C	JO WILLI	10										
SEIT3620	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	1	2					3		3	1
CO 2	1	3	3	3					3		3	3
CO 3	1	3	3	3	3				3		3	3
CO 4	1	3	3	3	3				3		3	3
CO 5	1	3	3	3					3		3	

Mapping of CO with PSO

Mapping of do With 1 be			
SEIT3620	PSO1	PSO2	PSO3
CO 1	3	3	3
CO 2	3	3	1
CO 3	3	3	3
CO 4	3	3	3
CO 5	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Data Visualization	1, 2, 3
2	Advanced Data Visualization Techniques	3, 4, 6
3	Data Preparation for Visualization	2, 3, 4, 5
4	Advanced Visualizations & Machine Learning Integration	3, 4, 6

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3610

Course Name: 3D Modelling and Rendering

Prerequisite Course (s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory Drestical Tytorial		Cradit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	02		03	40	60	20	30	1	-	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- understand the fundamentals of modeling and rendering.
- know the working principles of objects in three dimensional space.
- acquire knowledge about the issues in Scene modelling.
- learn rendering algorithms and application of special effects to the modelled objects.
- gain skill in designing real time movie and games.

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	MATHEMATICS FOR MODELING Survey of Computer Graphics – Overview of Graphics System: Video Display Devices, Raster System, Input Devices – Interactive Input Methods and Graphical User Interfaces – Vector Tools for Graphics: Dot Product, Cross Product, Representation of Key Geometric Objects, Intersection of lines and planes, Polygon Intersection – Introduction to OpenGL.	06	15
2.	GEOMETRIC PRIMITIVES MODELING Transformation of Objects: 3D Affine Transformation, Geometric Transformation – 2D and 3D Viewing – Modeling Shapes with Polygons Meshes – Curves and Surface Design – Color Models and Color Application – Object Modeling using OpenGL – Introduction to Unity Software.	06	20
3.	OBJECT MODELING Rendering Faces for Visual Realism – Hidden surface removal – Visual Surface Detection Methods – Illumination Models and Surface Rendering Methods – Computer Animation – Hierarchical Modeling – Human Character Modeling – Applying Emotion for the Characters – Vehicle Modeling – Landscape Modeling.	03	15
	Section II		
4.	SCRIPTING Physics: Collision Detection, Particles Systems, Rigid Bodies Motion, Deformable Bodies – Artificial Intelligent: Path Finding, Controlled Based Animation, Animation and Modeling: Keyframe, Kinematics, Inverse Kinematics – Rigging – Bones – Adding Speech Movements to Characters – Skinning – Spatial Sorting – Level of Details.	08	20

	RENDERING AND SPECIAL EFFECTS		
5.	Developing 2D and 3D Interactive Scene using OpenGL, Unity and	07	30
	Similar Tools – Overview of Gaming Genre, Atmospheric and Render		
	Effects – Ray Tracing and Mental Ray – Advanced Tools in Rendering		
	- Global Illumination - Shade Effects - Sound - Lighting - Video Post		
	Interface – Atmospheric Effects: Fire, Water, Fog – Impact of		
	Graphics and Animation on Film and Gaming Industry.		
	TOTAL	30	100

Sr.	Name of	Hours
No	Practical	
1.	Implementing basic 2D geometric objects (lines, circles, polygons) using	02
	OpenGL.	
2.	Implement a OpenGL program that removes the hidden surface of the	02
	objects in a scene of five objects that overlaps.	
3.	Using dot and cross products in 3D graphics for lighting and shading.	02
4.	Create 3D geometric objects (cube, sphere, pyramid) in OpenGL.	02
5.	Implementing transformations like scaling, rotation, and translation in	02
	OpenGL.	
6.	Basic polygon mesh creation and manipulation using OpenGL.	02
7.	Music and audio editing using Audacity.	02
8.	Modeling a simple vehicle and animating its movement.	02
9.	Creating a basic keyframe animation for a character in Unity.	02
10.	Implementing inverse kinematics for character limb movement.	02
11.	Creating an interactive 3D scene with Unity (camera control, lighting).	02
12.	Implementing ray tracing for realistic lighting effects in OpenGL.	02
13.	Designing an atmospheric effect (fog, water, fire) in Unity.	02
14.	Using shaders to create realistic surface shading (Phong or Gouraud).	02
15.	Developing a final scene in Unity with integrated sound, lighting, and	02
	post-processing effects.	
	TOTAL	30

Text Book(s):

Text Book(b):		
Title	Author/s	Publication
Computer Graphics: Principles and	John F. Hughes, Andries van	Addison Wesley, Latest Edition
Practice	Dam, Morgan McGuire,	
	David Sklar, James D. Foley,	
	and Steven K. Feiner	
Fundamentals of Computer	Peter Shirley, Michael	CRC Press
Graphics	Ashikhmin, Steve	
	Marschner	

Reference Book(s):

Title	Author/s	Publication
"3D Animation Essentials",	Andy Beane	John Wiley & Sons, 2012.
"Practical Algorithms for 3D Computer Graphics",	R. Stuart Ferguson,	Second Edition, CRC Press, 2013.
Auto Desk Maya 2016 Basic Guide",	Kelly L. Murdock	Auto Desk Maya, 2016.

Computer Graphics with OpenGL	Donald Hearn, M. Pauline	Third Edition, Pearson
	Baker	Education, 2012.

Course Evaluation:

Theory

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to,

SEML3610	3D MODELLING AND RENDERING
CO1	Explain the fundamentals of modeling and rendering.
CO2	Illustrate the working principles of objects in three dimensional space.
CO3	Discuss the working principles of objects in three dimensional space.
CO4	Recite the rendering algorithms and application of special effects to the modelled objects.
CO5	Discover the skills in designing real time movie and games.

Mapping of CO with PO

	0 111111											
SEML3610	PO1	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	1		1	1							
CO 2	1	1		1	3			1				
CO 3	2			2	2							
CO 4	1	1		1	3			1				
CO 5	2	1		1	3			1			2	2

Mapping of CO with PSO

SEML3610	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	1	1	3
CO 3	2	2	2
CO 4	2	1	2
CO 5	1		1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Mathematics for Modelling	1, 2, 4

2	Geometric primitives Modelling	2, 3, 5, 6
3	Object Modelling	1, 4, 5, 6
4	Scripting	1, 3, 5, 6
5	Rendering and Special Effects	3, 4, 5, 6

Department of Computer Engineering

Course Code: SEIT3630

Course Name: Image Processing

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)													
Theory	Dragtical Tutorial		Tutorial Credit		eory	Prac	ctical	Tut	orial	Total							
Theory	Practical	Tutorial	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	02	00	03	40	60	40	60	0	0	200							

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- understand the fundamentals of image processing.
- Apply various processes on the image for image understanding.
- Design and implement algorithms that perform basic image processing

Course Content:

	Section I			
Module No.	Content	Hours	Weightage in %	
1.	Introduction to Digital Image Fundamentals Fundamentals steps in digital Image Fundamentals, Human visual system, Image as a 2D data, Image representation – Grayscale and Color images, image sampling and quantization, Some basic relationships between pixels.	04	10	
2.	Image Enhancements In spatial domain: Basic gray level transformations, Histogram processing, Using arithmetic/Logic operations, smoothing spatial filters, Sharpening spatial filters. In Frequency domain: Introduction to the Fourier transform and frequency domain concepts, smoothing frequency-domain filters, Sharpening frequency domain filters.	07	15	
3.	Image Restoration and Reconstruction Image Degradation Models: Noise and Blur. Noise Removal Techniques: Mean, Median, and Adaptive Filters. Inverse Filtering and Wiener Filtering.			
	Section II			
Module No.	Content	Hours	Weightage in %	
4.	Color Image Processing Basics of color Models (RGB, CMY, HIS), Pseudocolor image processing.	02	12	
5.	Image Compression Introduction, coding Redundancy, Inter-pixel redundancy, image compression methods, Lossy and Lossless compression, Huffman coding, Arithmetic coding, LZW coding, IPEG compression standard.	03	10	
6.	Image Segmentation point, line and edge detection, Thresholding, Regions Based segmentation, Edge linking and boundary detection, Hough transform.	03	10	

7.	Morphological Image Processing Erosion, dilation, opening, closing, Basic Morphological Algorithms: hole filling, connected components, thinning, skeleton.	03	08
8.	Case Studies Object representation, description, and recognition, Application of Image processing in various field.	04	10
	TOTAL	30	100

Sr. No.	Name of Practical	Hours
1.	Introduction to Image Processing Toolbox.	04
2.	Read the image and perform	04
	1. RGB to Gray image	
	RGB to Indexed image and Gray to Indexed image	
3.	Read an 8bit image and then apply different image enhancement techniques:	04
٥.	(a) Brightness improvement	04
	(b) Brightness reduction	
	(c) Thresholding	
	(d) Negative of an image	
	(e) Log transformation	
	(f) Power Law transformation.	
4.	Implement different interpolation techniques using MATLAB.	04
5.	Read an image, plot its histogram then do histogram equalization and comment	04
	about the result.	
6.	(a) Implement Gray level slicing (intensity level slicing) in to read cameraman	06
	image. (b) Read an 8bit image and to see the effect of each bit on the image. (c) Read	
	an image and to extract 8 different planes i.e. 'bit plane slicing."	
7.	Implement various Smoothing spatial filter	04
8.	Read an image and apply (1) Gaussian 3x3 mask for burring (2) High pass filter	06
	mask with different masks (3) Laplacian operator with center value positive and	
	negative (4) High boost filtering.	
9.	Write a program to implement various low and high pass filters in the frequency	04
	domain.	0.4
10.	Write a program for erosion and dilation, opening & closing using inbuilt and	04
11	without inbuilt functions.	0.4
11.	Implement and study the effect of Different Mask (Sobel, Prewitt, and Roberts)	04
12.	Implement various noise models and their Histogram	04
13.	Implement inverse filter and Wiener filter over image and comment on them	04
14.	Implement Image compression using DCT Transform	04
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Digital Image Processing	Rafael C. Gonzalez, Richard E. Woods	Pearson Education
Fundamentals Digital Image	ITL Education Solutions Limited	Prentice Hall India
Processing		Learning

Reference Book(s):

Title	Author(s)	Publication
Image Processing, Analysis and	Milan Sonka, Vaclav Hlavac,	CL Engineering
Machine Vision	Roger Boyle	
Digital Image Processing	William K. Pratt	John Wiley & Sons

Web Material Link(s):

• https://nptel.ac.in/courses/106105032/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SEIT3630	IMAGE PROCESSING
CO 1	Immediate understanding of the concept of digital image.
CO 2	Understand the basic image enhancement techniques in spatial & frequency domains
CO 3	Apply image filtering to score image restoration, reconstruction, and compression.
CO 4	Create image segmentation and devise object recognition with the help of different
CO 4	case studies.

Mapping of CO with PO

SEIT3630	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	P012
CO 1	3	2	1		2							
CO 2	3	3	2	2	2							
CO 3	3	3	3	3	3							
CO 4	3	3	3	3	3	1	1	2	1	2	2	3

Mapping of CO with PSO

SEIT3630	PSO1	PSO2	PSO3
CO 1		2	
CO 2		3	
CO 3		3	2
CO 4	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Digital Image Fundamentals	1,2
2.	Image Enhancements	1,2,4
3.	Image Restoration and Reconstruction	2,3,5
4.	Color Image Processing	2,5
5.	Image Compression	2,5

6.	Image Segmentation	4,5
7.	Morphological Image Processing	2,4,5
8.	Case Studies	3,6

Department of Computer Engineering

Course Code: SECE3630

Course Name: Wireless Network & Mobile Computing

Prerequisite Course(s): Computer Networks

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	Th D + 1		name Dragtical Tutorial Crass		al Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
02	02	00	03	40	60	40	60	0	0	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Explain the terminology, principles, architectures, protocols, and methodologies used in Wireless Communication and Mobile Computing Networks.
- Understand the basics of wireless communication technologies, including 3G, 4G, 5G, IoT, and WiMAX.
- Build knowledge of Mobile Computing Algorithms, network layers, and transport protocols for wireless communication.
- Develop skills in designing and implementing wireless applications using modern tools, mobile OS, and Wireless Application Protocols.

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Mobile Computing Architecture Types of Networks, Architecture for Mobile Computing: 3-tier Architecture and Design Considerations, Applications. Wireless Transmission: Signals, Antennas, Signal propagation, Multiplexing, Modulation, Cellular Systems. Medium Access Control: Motivation for a specialized MAC, SDMA, FDMA, TDMA, CDMA.	04	05
2.	Wireless Networks – 1 GSM and SMS: Global Systems for Mobile Communication (GSM and Short Service Messages SMS), GSM Architecture, Protocols, Call routing in GSM, Handover, Security. Introduction to SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications.	04	15
3.	Wireless Networks – 2 Advanced Data Network Technologies GPRS: GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Applications for GPRS, Introduction to WiMAX.	04	15
4.	Wireless Networks –3 3G,4G, and 5G Networks: Third Generation Networks, Fourth Generation Networks, Vision of 5G. 3G vs. 4G vs. 5G: Features and Challenges and Applications. Introduction to Emerging Wireless Technologies: Wi-Fi 6, Li-Fi, NB-IoT.	04	15
	Section II	T	T
Module No.	Content	Hours	Weightage in %

5.	Mobile network layer Mobile IP, Dynamic Host Configuration protocol, Mobile ad-hoc networks (MANETs). Mobile Transport layer: Traditional TCP, classical TCP improvements, TCP over 3G/4G wireless networks	04	10
6.	Mobile OS and Computing Environment Smart Client Architecture: The Client: User Interface, Data Storage, Performance, Data Synchronization, Messaging. The Server: Data Synchronization, Enterprise Data Source, Messaging. Mobile Operating Systems: Android, iOS, Introduction to Wearable Device OS. Development Process: Key Considerations for Mobile Applications.	03	15
7.	Building Mobile Internet Applications Thin client Architecture: the client, Middleware, Messaging Servers, Processing a Wireless request. Wireless Applications Protocol (WAP) Overview. Wireless Languages: Markup Languages (HDML, WML, HTML, cHTML, XHTML, VoiceXML).	04	15
8.	Emerging and Future Technologies : The architecture of future Networks, Wireless Sensor Network (WSN), IoT, Edge Computing , Fog Computing , and their role in mobile networks.	03	10
	TOTAL	30	100

Sr. No.	Name of Practical	Hours
1.	Setup & Configuration of Wireless Access Point (AP)	04
2.	Implementation of Wireless Network with a number of nodes and different parameters using Simulator.	04
3.	Study of WLAN: Ad Hoc & Infrastructure Mode	04
4.	GSM modem study and Modern Messaging Systems : Implement a basic	04
	client-server messaging application using MQTT or push notifications.	04
5.	Development of a Progressive Web App (PWA): Build a simple PWA to demonstrate mobile-friendly design and offline capabilities.	04
6.	Design and Program Income Tax and Loan EMI Calculator for Mobile Phones	04
7.	Implementation of Mobile Network using Network Simulator (NS3/GNS3)	06
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Mobile Communications	Schiller	Pearson
Wireless Communications & Networks	William Stallings	Pearson

Reference Book(s):

Title	Author(s)	Publication	
Principles of Mobile Computing	UIWE Hansman, Other Merk, Martin-S-	Springer international	
	Nickious, Thomas Stohe	Edition	
Mobile Computing	Ashok K. Teludkar	TMH	
Mobile AdHoc Networks	Chai K.Toh	Prentice Hall	
Programming with C	Byron Gottfried	Tata McGraw Hill	

Web Material Link(s):

• http://alphace.ac.in/downloads/notes/cse/10cs831.pdf

Course Evaluation:

Theory:

• Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be

converted to 30 marks.

- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE3630	WIRELESS NETWORK & MOBILE COMPUTING
CO 1	Understand and relate the fundamentals of wireless communication and mobile computing architectures to real-world applications, including cellular and IoT systems.
CO 2	Analyze the unique characteristics of wireless networks, including security, mobility, energy efficiency, and scalability, with practical insights into current technologies like 3G, 4G, and 5G.
CO 3	Design and evaluate wireless network protocols, including MAC, TCP/IP extensions, and mobile communication systems, using simulation tools
CO 4	Develop the knowledge of TCP/IP extensions for mobile and wireless networking.

Mapping of CO with PO

SECE3630	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12
C0 1	1	1	1	1								1
C0 2	1	2	1	1	1		1					1
C0 3	1	2	1	2	2		2				1	1
C0 4	1	2	1	2	1		2					1

Mapping of CO with PSO

SECE3630	PSO1	PSO2	PSO3		
CO 1		3	3		
CO 2	3	2	2		
CO 3	3	3	3		
CO 4	3	3	2		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Mobile Computing Architecture	1,2
2	Wireless Networks - 1	1,2
3	Wireless Networks – 2	2,3,4
4	Wireless Networks -3	2,3,4
5	Mobile network layer, Mobile Transport layer	2,4
6	Mobile OS and Computing Environment	3,6
7	Building Mobile Internet Applications	3,6
8	The architecture of future Networks, Wireless Sensor	3, 5, 6
0	Network, IoT	

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3910

Course Name: Summer Training

Prerequisite Course(s): --

Teaching & Examination Scheme:

Tead	ching Scheme	Examination Scheme (Marks)								
Theory	Dragtical	Tutorial	Cradit	Crodit Theory		Practical		Tutorial		Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	04		04	1		100	-	1	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum.
- learn to adapt themselves in professional scenario.

Outline of the Summer Training:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Total:	100

Course Outcome(s):

After completion of the course, the student will be able to,

SEML3910	SUMMER TRAINING
	Construct company profile by compiling brief history, management structure,
CO1	products/services offered, key achievements and market performance for the
	company visited during internship.
CO2	Determine the challenges and future potential for his/her internship organization in
COZ	particular and the sector in general.
CO3	Test the theoretical learning in practical situations by accomplishing the tasks
COS	assigned during the internship period.
	Apply various soft skills such as time management, positive attitude and
CO4	communication skills during performance of the tasks assigned in internship
	organization.
CO5	Analyze the functioning of internship organization and recommend changes for
603	improvement in processes.

Mapping of CO with PO

mapping or o	O WILLIA											
SEML3910	PO1	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO 1								3	3	3		3
CO 2	3	3	3				2					3

CO 3	2	2	3	2	2		3			3
CO 4					3	2	3	3		
CO 5		3	3			2		3	3	3

Mapping of CO with PSO

SEML3910	PSO1	PSO2	PSO3
CO 1	1	2	1
CO 2	1	2	2
CO 3	1	2	3
CO 4	1	1	3
CO 5	1	2	3

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Department of Computer Engineering

Course Code: SECE3231

Course Name: Cloud Computing & Applications

Prerequisite Course(s): Computer Networks, and Operating System

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Tl D		C 1''	Theory		Practical		Tutorial		Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the principles and paradigm of Cloud Computing
- understand the Service Model with reference to Cloud Computing
- appreciate the role of Virtualization Technologies
- gain ability to design and deploy Cloud Infrastructure
- understand cloud security issues and solutions

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Cloud Computing Overview, Roots of Cloud Computing, Layers and Types of Cloud, Desired Features of a Cloud, Benefits and Disadvantages of Cloud Computing, Cloud Infrastructure Management, Infrastructure as a Service Providers, Platform as a Service Providers, Challenges and Risks	05	10
2.	Cloud Architecture, Services and Applications Exploring the Cloud Computing Stack, connecting to the Cloud, Infrastructure as a Service, Platform as a Service, Saas Vs. Paas, Using PaaS Application Frameworks, Software as a Service, Cloud Deployment Models, Public vs Private Cloud, Cloud Solutions, Cloud ecosystem, Service management, Identity as a Service, Compliance as a Service	05	10
3.	Virtualization, Abstraction and Cloud Platform Introduction to Virtualization Technologies, Load Balancing and Virtualization, Understanding Hypervisors, Understanding Machine Imaging, Porting Applications, Virtual Machines Provisioning and Manageability Virtual Machine Migration Services, Virtual Machine Provisioning and Migration in Action, Provisioning in the Cloud Hypervisors	07	15
4.	Cloud Infrastructure and Cloud Resource Management Architectural Design of Compute and Storage Clouds, Layered Cloud Architecture Development, Design Challenges, Inter Cloud Resource Management, Resource Provisioning and Platform Deployment, Global Exchange of Cloud Resources. Administrating the Clouds, Cloud Management Products, Emerging Cloud Management Standards	06	15

Module	Content	Hours	Weightage in %
5.	Cloud Security Security Overview, Cloud Security Challenges and Risks, Software-as-a- Service Security, Cloud computing security architecture: Architectural Considerations, General Issues Securing the Cloud, Securing Data, Data Security, Application Security, Virtual Machine Security, Identity and Presence, Identity Management and Access Control, Autonomic Security Establishing Trusted Cloud computing, Secure Execution Environments and Communications, , Identity Management and Access control Identity management, Access control, Autonomic Security Storage Area Networks, Disaster Recovery in Clouds	06	15
6.	AWS Programming, Management Console and Storage Basic Understanding APIs - AWS programming interfaces, Web services, AWS URL naming, Matching interfaces and services, Elastic block store - Simple storage service, Define the AWS Cloud and its value proposition, Identify aspects of AWS Cloud economic, List the different cloud architecture design principles, Security and Compliance, Define the AWS shared responsibility model, Define AWS Cloud security and compliance concepts, Identify AWS access management capabilities, Identify resources for security support	09	20
7.	AWS Technology, Billing and Pricing Define methods of deploying and operating in the AWS Cloud, Define the AWS global infrastructure, Identify the core AWS services, identify resources for technology support, Compare and contrast the various pricing models for AWS, Recognize the various account structures in relation to AWS billing and pricing, Identify resources available for billing support	07	15
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical						
1	Cloud Concepts Overview	02					
2	Cloud Economics and Billing	02					
3	Cloud Global Infrastructure Overview	02					
4	Explore Cloud Security Fundamentals						
5	Networking and Content Delivery	04					
6	Explore Compute Services (IAAS)	04					
7	Explore Storage Services	04					
8	Explore Database Services	04					
9	Cloud Architecting	02					
10	Auto Scaling and Monitoring	02					
	TOTAL	30					

Text Book(s):

Title	Author/s	Publication
Cloud Computing Bible	Barrie Sosinsky	John Wiley & Sons

Reference Book(s):

Title	Author/s	Publication	
Amazon Web Services for Dummies	Bernard Golden	Dummies	
Amazon Web Services in Action	Michael Wittig and Andreas Wittig	Dreamtech Press	
Building Applications in the Cloud: Concepts, Patterns and Projects	Christopher M. Moyer	Pearson Addison- Wesley Professional	

Cloud Computing Design Patterns	Thomas Erl	Prentice Hall
---------------------------------	------------	---------------

Web Material Link(s):

- http://www.cloudbus.org/
- https://aws.amazon.com/
- http://aws.amazon.com/documentation/
- http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted out of 30 marks.
- Faculty Evaluation consists of 10 marks as per guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks Exam.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE3231	CLOUD COMPUTING & APPLICATIONS
CO 1	Describe various cloud computing features, challenges through various models and
COT	services.
CO 2	Apply different approaches of cloud computing system for efficient data storage with minimal cost.
CO 3	Identify various management related services of aws.
CO 4	Distinguish various security and compliance related issues with aws.
CO 5	Deploy applications over commercial cloud computing infrastructures such as amazon.

Mapping of CO with PO

SECE3231	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	2			3				1			2
CO 2		3		2	2				2			3
CO 3	2			3							1	3
CO 4	2			2	1							2

Mapping of CO with PSO

SECE3231	PSO1	PSO2	PSO3
CO 1	3		2
CO 2	1	3	
CO 3	2		3
CO 4		2	3

Level of Revised Bloom's Taxonomy in Assessment:

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Cloud Computing	1, 2
2	Cloud Architecture, Services and Applications	1, 2
3	Virtualization, Abstraction and Cloud Platform	1, 2, 3
4	Cloud Infrastructure and Cloud Resource Management	1, 2, 3
5	Cloud Security	1, 2, 3
6	AWS Programming, Management Console and Storage	1, 2, 3, 4
7	AWS Technology, Billing and Pricing	3, 4, 5, 6

Department of Computer Engineering

Course Code: SECE3241

Course Name: Artificial Intelligence of Things

Prerequisite Course(s): Computer Networks (SECE2240)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Dwagtigal	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	04	0	04	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Introduce the fundamental concepts relevant to design issues related to Internet of Things.
- Learn how to interface sensors and Actuators with embedded IoT devices.
- Implement connectivity and communication IoT protocols.
- Implement IoT applications with concepts of AI.

Course Content:

Section I							
Module No.	Content	Hours	Weightage in %				
1.	Introduction of AI and IoT What is an AI? AI Problems and applications, Major areas of AI, History of AI. What is IoT? Impact of IoT, IoT Challenges, IoT architecture.	02	10				
2.	Hardware in IoT Choosing criteria for IoT Hardware, Arduino UNO, NodeMCU, ESP32, Sensing, Actuation, Arduino C, GPIO programming & interfacing IoT hardware.	04	15				
3.	Networking in IoT SOA for IoT, IoT Gateways, IoT Protocol stack, Networking Protocols - MQTT: MQTT Communication, SMQTT CoAP, XMPP, AMQP	05	13				
4.	Communication in IoT Connectivity protocols - IEEE 802.15.4, Zigbee, 6LowPAN, Wireless HART, Z-Wave, ISA 100, Bluetooth, NFC, RFID, RPL, WiFi, BLE/iBeacon, LORAwan, cellular and Ethernet	04	12				
Section II							
Module No.	Content	Hours	Weightage in %				
5.	Raspberry Pi Raspberry Pi and its variant, Raspberry Pi programming, Choosing a right board, Tools, Sensing IoT Environments	03	12				
6.	IoT and AI Platforms Google Cloud IoT, Microsoft Azure IoT Suite, Amazon AWS IoT, IBM Watson IoT Platform, Predix, H2O.	04	13				
7.	Security and Privacy in AloT AI-based IoT security techniques, Privacy challenges in AloT ecosystems, Ethical considerations in AloT deployment.	03	10				
8.	AloT Application Development - Case Studies Introduction to tools and platforms essential for building AloT applications. Practical Aspects of AloT applications, including: Smart	05	15				

City, Smart Transportation, Smart Manufacturing, Smart Healthcare, Agriculture, Activity Monitoring and Smart Homes.		
TOTAL	30	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Study the fundamentals of AIOT applications in real world.	02
2.	Familiarization with Arduino/Raspberry Pi and perform necessary software	02
	Serial Monitor, LED, Servo Motor - Controlling:	
3.	To interface LED/Buzzer with Arduino and write a program to turn ON LED for 1 sec after every 2 seconds.	02
4.	To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.	06
	To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection. (a) Interfacing the RGB LED with the Arduino. (b) Creating different led patterns and controlling them using push button switches.	
	(c)Controlling servo motor with the help of joystick.	
	LDR Sensor, Alarm and temperature, humidity measurement:	
5.	(a)Controlling relay state based on ambient light levels using LDR sensor.(b)Basic Burglar alarm security system with the help of PIR sensor and buzzer.(c)Displaying humidity and temperature values on LCD using Temperature sensor	08
	Experiments using ESP8266/ESP32:	
6.	(a)Interfacing and programming of IR sensors(b)Interfacing and programming to detect presence of Gas using GAS Sensor.(c) Program to detect presence of smoke using Smoke Sensor.(d) Program to play melody with a Piezo speaker.	10
	Distance Measurement of an object:	
7.	Calculate the distance to an object with the help of an ultrasonic sensor and display it on an LCD.	04
	IOT Framework:	
8.	Upload humidity & temperature data to Thing Speak, periodically logging ambient light level to Thing Speak	04
	Experiments using R-Pi:	6.1
9.	Getting started with Raspberry Pi and OS Installation	04
10.	Sensing IoT devices with Raspberry Pi using Python	04
11.	Experimenting with Amazon AWS IoT cloud	04
12.	AIoT based mini project	10
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Internet of Things (A Hands-on	Vijay Madisetti and Arshdeep Bahga	1st Edition, VPT
Approach)		
Hands-On Artificial Intelligence for	By Amita Kapoor	Packt Publishing, 2019
IoT		

Reference Book(s):

Title Author(s) Publication

IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things	David Hanes, Gonzalo Salgueiro, Patrick Grossetete	1st Edition, 2018, Pearson India
21 Internet of Things (IOT)	Yashavant Kanetkar and	1st Edition, 2018, BPB
Experiments: Learn IoT, the	Shrirang Korde	Publications
programmer's way		

Web Material Link(s):

- https://nptel.ac.in/courses/106106126/
- https://nptel.ac.in/courses/106/105/106105166/
- https://www.tutorialspoint.com/arduino/
- https://pythonprogramming.net/introduction-raspberry-pi-tutorials/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/ Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE3241	ARTIFICIAL INTELLIGENCE OF THINGS
CO 1	Understanding Concepts of Artificial Intelligence and Internet of Things.
CO 2	Analyzing the Concepts of Hardware, Networking and Communication in IOT.
CO 3	Elaborating minicomputer in IOT named as Raspberry PI.
CO 4	Introducing Cloud and AI Platforms for IoT Integration
CO 5	Explaining and designing secure AIOT Applications.

Mapping of CO with PO

SECE3241	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	2										2
CO 2	3	3	2	2	2							2
CO 3	3		3		2							2
CO 4	3	2	2	2	2						2	2
CO 5	3	3	3	3	3	2	2	2	2	2	2	2

Mapping of CO with PSO

Mapping of Co With 1 50			
SECE3241	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	3	2
CO 3	3	2	2
CO 4	3	3	3
CO 5	3	3	3

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction of AI and IoT	1, 2
2.	Hardware in IoT	2, 3, 4
3.	Networking in IoT	2, 3, 4
4.	Communication in IoT	2, 3, 4
5.	Raspberry Pi	2, 3, 4
6.	IoT and AI Platforms	2, 3, 4
7.	Security and Privacy in AIoT	5, 6
8.	AIoT Application Development - Case Studies	6

Department of Computer Science & Engineering (ML & AI)

Course Code: SECE4211

Course Name: Machine Learning

Prerequisite Course(s): Foundation of Machine Learning (SEML3211)

Teaching & Examination Scheme:

Tead	ching Scheme	e (Hours/We	eek)		Examination Scheme (Marks)					
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	40	60	0	0	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Master the concepts of supervised and unsupervised learning, recommendation engine, and time series modeling.
- Implement models such as support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-means clustering and more in Python.
- Comprehend the theoretical concepts and how they relate to the practical aspects of Machine Learning.

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Artificial Intelligence and Machine Learning: Learning Problems, designing a learning system, Issues with machine learning. Concept Learning, Version Spaces and Candidate Eliminations, Inductive bias.	06	10
2.	Regression: Linear Regression, Polynomial Regression, Support Vector Machine Regression, Decision Tree Regression, Random Forest Regression Classification: Logistic Regression, Support Vector Machines, Decision Trees, Random Forests, Naive Baye	08	20
3.	Artificial Neural networks and genetic algorithms: Neural Network Representation, Appropriate problems for Neural Network Learning, Perceptrons, Multilayer Networks and Back Propagation Algorithms, Remarks on Back Propagation Algorithms. Case Study: face Recognition.	09	20
	Section II		
Module No.	Content	Hours	Weightage in %
4.	Bayesian Learning: Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and Least squared Error Hypothesis, Maximum likelihood hypothesis for Predicting probabilities, Minimum Description Length, Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naive Bayes Classifier. Case Study: Learning to classify text.	09	20
5.	Unsupervised learning: Unsupervised learning, Applications, challenges, Clustering,	07	20

	Association Rule Learning, Dimensionality Reduction, K-means		
	Clustering, Density-Based Clustering (DBSCAN), Apriori Algorithm,		
	Principal Component Analysis (PCA)		
6	Overview:	06	10
6.	Typical application areas, such as Recommender System.	00	10
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Introduction	02
2.	Build a decision tree from given data and visualize its structure.	02
3.	Train and test a decision tree classifier on a dataset.	02
4.	Apply K-Means clustering to group data into clusters.	02
5.	Implement k-NN classification and test it on a dataset.	02
6.	Train a Random Forest classifier and analyze its predictions.	04
7.	Implement an SVM classifier and test it on a dataset.	04
8.	Implement the PageRank algorithm to rank web pages.	04
9.	Train a Naïve Bayes classifier for text or numerical data.	04
10.	Build and test a Classification and Regression Tree (CART) model.	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Machine Learning	Tom M Mitchell	McGraw Hill

Reference Book(s):

Title	Author(s)	Publication
Pattern Recognition and Machine	Christopher Bishop	Springer-Verlag New York
Learning		Inc.
Real-World Machine Learning	Henrik Brink, Joseph Richards,	DreamTech
	Mark Fetherolf	

Web Material Link(s):

- https://nptel.ac.in/courses/106/105/106105152/
- https://wqu.org/programs/datascience/?utm_source=datawrkz&utm_medium=search&utm_camp ai gn=datascience&gclid=EAIaIQobChMIr_TK5ZOh5wIVzQorCh0YdQBvEAAYASAAEgLb5PD_BwE

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, and average at the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE4211	MACHINE LEARNING
CO 1	Recognize basic problem with hypothesis and version spaces.
CO 2	Understand and apply the features of machine learning on real world problems.
CO 3	Identify and utilize various algorithms of supervised and unsupervised learning.
CO 4	Recall the concept of neural networks, Bayesian analysis from probability models and methods.
CO 5	Illustrate fundamental concepts of genetic algorithm.

Mapping of CO with PO

- 10-P P-11-8 01	00											
SECE4211	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1		2		1								1
CO 2			2	2	3							2
CO 3		2		1	2				1			1
CO 4	1	1		1	1					1		1

Mapping of CO with PSO

SECE4211	PSO1	PSO2	PSO3
CO 1		3	
CO 2	2	1	2
CO 3	1	1	
CO 4	1		1
CO 5	1		1

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
1.	Introduction to Artificial Intelligence and Machine	1,2
	Learning	
2.	Supervised learning	1,2,3,5
3.	Artificial Neural networks and genetic algorithms	2,4,5
4.	Bayesian Learning	2,3,4
5.	Unsupervised learning	2,3,4
6.	Overview	2,3,5

Department of Computer Engineering

Course Code: SECE3560 Course Name: Project-I Prerequisite Course(s): --

Teaching & Examination Scheme:

Tead	Teaching Scheme (Hours/Week)					aminati	on Scher	ne (Mar	ks)	
Theory	eory Practical Tutorial		Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	3	-	3	-	-	100	ı	1	ı	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the current trend or technology.
- aware of future technologies.
- try to learn new technologies and apply them as much as possible.

•

Outline of the Project-I

S. No.	Task	Weightage in %
1.	Group Formation	-
2.	Title Approval and Mentor Allocation	-
3.	First Progress Report	5
4.	First Review	10
5.	Second Progress Report	5
6.	Third Progress Report	5
7.	Second Review	10
8.	Fourth Progress Report	5
9.	Fifth Progress report	10
10.	Final Report Evaluation	25
11.	Final Presentation	25
	TOTAL	100

Detailed Guideline(s):

Sr. No.	Content	Weightage in %
1.	Group Formation: Group formation requires a minimum of one member and allows for a maximum of three members per group.	-
2.	Title Approval and Mentor Allocation: In the initial week of the semester, students are tasked with submitting a preliminary review of their project with a suitable title. This submission includes a comprehensive synopsis and outline, accompanied by a discussion on the anticipated project outcomes. This early review acts as the foundation for the project, laying the groundwork and establishing the direction for subsequent work. Additionally, during this stage, mentors are allocated to provide guidance and support throughout the project development process.	-
3.	First Progress Report: Within the initial weeks of commencing the project, students are required to submit a detailed report outlining their progress, achievements, and any challenges encountered.	5
4.	First Review:	10

	TOTAL	100
10.	Final Report Evaluation & Final Presentation: During this phase, students present their comprehensive Final Report, encapsulating the entire project lifecycle, methodologies employed, outcomes achieved, and lessons learned. Final Report Evaluation: The Final Report undergoes a thorough evaluation by faculty members and external experts. This evaluation scrutinizes the depth of content, adherence to project objectives, and the overall quality of documentation. Final Presentation: Students present their projects to a panel of faculty members, peers, and potentially external stakeholders. This presentation offers an opportunity to showcase the project's significance, innovation, and impact.	50
9.	Fifth Progress report: At this stage, students present a comprehensive overview of the project's evolution, encapsulating the lessons learned, achievements attained, and challenges overcome. The Fifth Progress Report serves as a reflection on the entire project lifecycle, providing insights into the iterative process of development. The students should submit the final report to the mentor which will be further sent for evaluation.	10
8.	Fourth Progress Report: In this report, students provide an updated justification of their progress, building on the insights gained from the Second Review. The Fourth Progress Report encapsulates the continuous refinement and optimization of project strategies. Students delve into the accomplishments achieved post-Second Review, addressing any recommendations made by external evaluators.	5
7.	Second Review: During this stage, internal evaluators and expert panels engage in a comprehensive assessment of the project's overall development and achievements. The Second Review provides students with an opportunity to present their progress, methodologies, and outcomes to a panel of experts.	10
6.	Third Progress Report: At this stage, students provide a comprehensive update on the continuous evolution of their projects, demonstrating the resilience and adaptability required for successful project development. In the Third Progress Report, students delve into the nuances of their progress since the Second Progress Report, showcasing not only achievements but also a reflective analysis of the journey thus far.	5
5.	Second Progress Report: This report explores into the details of the progress made since the First Progress Report and First Review, offering a comprehensive overview of achievements, setbacks, and adaptations to the project plan. Students should reflect on the effectiveness of their methodologies, address any unforeseen obstacles, and demonstrate a proactive approach to overcoming challenges.	5
	This report serves as an early checkpoint, allowing for an assessment of whether the project is on track with the proposed timeline and objectives. Students should highlight key accomplishments, provide insights into the methodologies employed, and address any deviations from the initial plan.	

Course Evaluation:

S. No.	Evaluation criteria	Marks
1.	First Progress Report	50
2.	First Review	100
3.	Second Progress Report	50
4.	Third Progress Report	50

5.	Second Review	100
6.	Fourth Progress Report	50
7.	Fifth Progress report	100
8.	Final Report Evaluation	250
9.	Final Presentation	250
	TOTAL	1000

The entire evaluation will be converted equivalent to 100 Marks.

Course Outcome(s):
After completion of the course, the students will be able to

SECE3560	PROJECT-I
CO 1	Analyze user requirements and implement innovative ideas for social and environmental benefits.
CO 2	Apply new technologies and design techniques concerned for devising a solution for a problem statement.
CO 3	Apply project management skills like task scheduling, teamwork, working in confine deadlines etc., for successfully development of the project.
CO 4	Prepare reports and presentations to communicate technical information.

Mapping of CO with PO

SECE3560	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	2	3	3	3	1	3	2	3			2	2
CO 2	3	1	1	2	3		2	3		1	2	3
CO 3			1					1	3	1	1	1
CO 4			1	1		2	1	1	1	3		3

Mapping of CO with PSO

SECE3560	PSO1	PSO2	PSO3
CO 1	2	3	2
CO 2	3	2	3
CO 3			1
CO 4			1

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3620

Course Name: Optimization Techniques

Prerequisite Course (s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					E	xamina	ation Sch	eme (N	/larks)	
Theory	Practical	Tutorial	Credit	Т	'heory	Practical		Tı	utorial	Total
				CE	ESE	CE	ESE	CE	ESE	
02	02		03	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- Cast engineering minima/maxima problems into optimization framework.
- Learn efficient computational procedures to solve optimization problems.
- Use Matlab to implement important optimization methods.

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Mathematical Preliminaries Linear algebra: Matrices, Vectors, Eigen analysis, Elements of probability theory, Elementary multivariable calculus	08	25
2.	Linear Programming Introduction to linear programming model, Simplex method, Duality, Karmarkar's method, transportation and assignment problems	07	25
	Section II		
3.	Unconstrained Optimization One-dimensional search methods, Gradient-based methods, Conjugate direction and quasi-Newton methods	04	15
4.	Constrained Optimization Lagrange theorem, First-Order Necessary Conditions (FONC), Second-Order Necessary Conditions (SONC), and Second-Order Sufficient Conditions (SOSC)	04	15
5.	Non-Linear problems Non-linear constrained optimization models, Karush-Kuhn-Tucker (KKT) condition, Projection methods	07	20
	TOTAL	30	100

List of Practical:

not of a faction				
Sr. No	Name of Practical	Hours		
1.	Matrix operations in Matlab	02		
2.	Differentiation of a vector and matrix in Matlab	02		
3.	Integration of a vector and matrix in Matlab	02		
4.	Simplex algorithm in Matlab	04		
5.	Implementation of Newton's method in Matlab	04		

6.	Implementation of Secant method in Matlab	04
7.	Implementation of Lagrange multiplier method in Matlab	04
8.	Implementation of KKT theorem in Matlab	04
9.	Implementation of BFGS method in Matlab	04
	TOTAL	30

Reference Book(s):

Title	Author/s	Publication		
An introduction to Optimization	Edwin P K Chong, Stainslaw Zak	Wiley Publication		
Nonlinear Programming	Dimitri Bertsekas	Athena Scientific		

Course Evaluation:

Theory:

- Internal Evaluation component consists of 30 marks containing two internal exams of 30 marks. Average of the same will be considered for final marking.
- End Semester Examination consists of 60 marks.
- Faculty evaluation component will be cumulative of assignments, exercises, classroom behaviors consisting of 10 marks.

Practical

- ContinuousEvaluation will be cumulative of practical performances, activities, presentations, viva and submissions consisting of 20 marks.
- Practical performance/quiz/drawing/test/submission of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to,

SEML3620	OPTIMIZATION TECHNIQUES
CO 1	Recall the theoretical foundations of various issues related to linear programming modeling to formulate real world problems as a l p model.
CO 2	Identify appropriate optimization methods to solve complex problems involved in various industries.
CO 3	Explain the theoretical workings of the graphical, simplex and analytical methods for making effective decisions on variables so as to optimize the objective function.
CO 4	Find the appropriate algorithm for allocation of resources to optimize the process of assignment.

Mapping of CO with PO

SEML3620	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	3	3	3	2	2	2						2
CO 2	3	3	3	2	3	2						2
CO 3	3	3	3	3	3	3						2
CO 4	3	3	3	3	3	3						2

Manning of CO with PSO

mapping of co with 150			
SEML3620	PSO1	PSO2	PSO3
CO 1	3	3	2
CO 2	3	3	2
CO 3	3	3	2
CO 4	3	3	2

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Mathematical preliminaries	1, 2,3,4
2	Linear Programming	3,4,5
3	Unconstrained optimization	2,3,4
4	Constrained optimization	3,4,5
5	Non-Linear Problems	2,3,4,6

Department of Computer Science & Engineering (ML & AI)

Course Code: SEML3630

Course Name: Business Analytics

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	kaminat	ion Sch	eme (M	arks)	
Theory	Practical	Tutorial	Credit	Theory		Practical		Τυ	ıtorial	Total
				CE	ESE	CE	ESE	CE	ESE	
02	02		03	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- find a meaningful pattern in data.
- learn to analyze the data using intelligent techniques.
- make better business decisions by using advanced techniques in data analytics.

Course Content:

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Business Analytics Definition, importance and applications, Types of analytics: Descriptive, Diagnostic, Predictive, Prescriptive, Technical architecture of Business Intelligence and Analytics (BIA), Fundamentals of data management, Online Transaction Processing (OLTP)	07	25				
2.	Statistical and Exploratory Analysis Introduction to Statistical learning, Descriptive Statistics, Inferential Statistics through Hypothesis Tests, Maximum Likelihood Test, correlation Analysis, Exploratory Data Analysis (EDA), Business case applications of EDA	08	25				
	Section II						
Module No.	Content	Hours	Weightage in %				
3.	Predictive & Prescriptive Analytics Predictive Analytics using Machine Learning, Regression Analysis and its types, K Nearest Neighbors Regression & Classification Techniques, Clustering, Association Rules Analysis	10	30				
4.	Case Studies in Business Analytics Two Case studies in Business analytics from any of the fields like Health care, Retail, Finance, Supply chain, Marketing, etc.	05	20				
	TOTAL	30	100				

List of Practical:

Sr. No	Name of Practical	Hours
1.	Introduction to Business Analytics Tools	02
2.	Data Preprocessing & Cleaning	04

3.	Exploratory Data Analysis (EDA) & Visualization	04
4.	Regression Analysis (Eg. Linear & Multiple Regression for Sales	02
	Prediction)	
5.	Classification Techniques (Eg. Logistic Regression, Decision Trees for	04
	Customer Churn)	
6.	Clustering & Market Segmentation (K-Means, Hierarchical Clustering)	04
7.	Sentiment Analysis for Customer review analysis	02
8.	Business Intelligence & Dashboard Development	02
9.	Capstone Case Study.	06
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Business Analytics: Data Analysis & Decision Making	S. Christian Albright, Wayne L.	Cengage Learning
Making	0 '	
	Winston	

Reference Book(s):

Title	Author/s	Publication
Intelligent Data Analysis	Michael Berthold, David J. Hand	Springer, 2007
Mining of Massive Datasets	Anand Rajaraman, Jeffrey David Ullman	Cambridge University Press

Web Material Link(s):

- https://onlinecourses.nptel.ac.in/noc24_cs65/
- https://www.coursera.org/learn/data-analytics-business

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/ Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to,

SEML3630	BUSINESS ANALYTICS
CO 1	Immediate understanding of data with various analysis techniques and business analytics.
CO 2	Compute basis analysis techniques.
CO 3	Explain machine learning and analysis techniques for data.
CO 4	Visualize the outcome of analysis.

Mapping of CO with PO

- 10.PP-11.B 01 0	0 11 2022											
SEML3630	P01	PO2	P03	PO4	P05	P06	PO7	P08	P09	P010	P011	PO12
CO 1	3	3	2	2	3							2
CO 2	3	3	2		1							2
CO 3	2	3	2	3	2							2
CO 4	3	2	2	2	2							2

Mapping of CO with PSO

SEML3630	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	3	2	2
CO 3	3	3	2
CO 4	3	2	2

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Business Analytics	1,2
2	Statistical and Exploratory Analysis	2,3,4,5
3	Predictive & Prescriptive Analytics	2,3,4,5
4	Case Studies in Business Analytics	3,4,5,6

Department of Computer Engineering

Course Code: SECE3620

Course Name: Service Oriented Computing

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	aching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Dractical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	02	ı	03	40	60	40	60	-	ı	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- explain the underlying principles of Service Oriented Architecture.
- describe and understand different terminologies used in Service Oriented Architecture.
- apply the different concepts of SOA to build different applications.

Course Content:

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Introduction Introduction to distributed Computing and Web services architectures and standards, Fundamental SOA, Key Principles of SOA. Monolithic vs SOA vs Microservices	04	15		
2.	Enterprise architectures Integration versus interoperation, J2EE, .NET, Model Driven Architecture, Concepts of Distributed Computing, XML.	04	15		
3.	Basic Concepts Web services framework, Services (Web services: Definition, Architecture, and standards), Service descriptions with WSDL, Messaging with SOAP, UDDI.	07	20		
	Section II				
Module No.	Content	Hours	Weightage in %		
4.	Principles of Service-Oriented Architecture Message Exchange Pattern, Coordination, Atomic Transactions, Business Activities, Orchestration, Choreography, WS-Addressing, WS-Reliable Messaging, WS-Policy (including WS-Policy Attachments and WS-Policy Assertions), WS-Metadata Exchange, WS-Security (including XML-Encryption, XML-Signature, and SAML).	07	20		
5.	Principles of Service-Oriented Computing RPC versus Document Orientation, Service Life Cycle, Service Creation, Service Design and Build, Service Deployment, Publish Web service using UDDI, Service Discovery, Service Selection, Service Composition, Service Execution, and Monitoring, Service Termination.	08	30		
	TOTAL	30	100		

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Develop DTD and XSD for University Information System having Exam Enrolment from the beginning of Semester, along with Exam Registration and Marks submission by Teachers to University from Various Colleges and Results in Sheets Generation by University on Online Report.	02
2.	Develop Mark sheet XML Document and display Mark sheet based on CSS and XSL presentation Format.	04
3.	Develop Java Based Program using JAXP or XML API in reading XML file for Students Information and Display HTML Table.	02
4.	Develop Java Based Web Service using REST and SOAP-Based web service in NetBeans for University Course List and Search Course based Course Title and Course ID.	04
5.	Create DTD file for student information and create a valid well-formed XML document to store student information against this DTD file.	02
6.	Create XMS schema file for student information and create a valid well-formed XML document to store student information against this DTD file.	04
7.	Create web calculator service in .NET Beans and create Java client to consume this web service.	02
8.	Develop same web service using JX-WS.	04
9.	Create web calculator service in .NET and Create java client to consume web service developed using Apache AXIS.	02
10.	Using WS –GEN and WS-Import develop the java web service & call it by Java Client.	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Service Oriented Architecture: Concepts,	Thomas Erl	Pearson education
Technology, and Design	Thomas Eff	

Reference Book(s):

Title	Author/s	Publication
Applied SOA	Michael Rosen, Boris L, Kevin S., Marc J. B.	Wiley Publication.
SOA based Enterprise Integration	Waseem Roshen	TMH Publication

Web Material Link(s):

• https://www.service-architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/service-oriented
architecture.com/articles/web-services/ser

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Exam.
- Viva/oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):After completion of the course, the students will be able to

SECE3620	SERVICE ORIENTED COMPUTING			
CO 1	Explain the difference between monolithic architecture versus service-oriented			
COT	architecture (soa).			
CO 2	CO 2 Practice real life examples and identify the underlying principles of soa.			
CO 3	Implement and integrate service-oriented architecture in the development cycle of			
0.03	web service-based applications.			
CO 4	Understand advanced concepts such as service composition, orchestration and			
	choreography.			

Mapping of CO with PO

SECE3620	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12
CO 1		1								1		
CO 2		2	1	1	1							
CO 3		1	2	3	2							2
CO 4		1			1							2

Mapping of CO with PSO

Trapping of do With 150			
SECE3620	PSO1	PSO2	PSO3
CO 1		1	
CO 2	3	3	3
CO 3	2	1	1
CO 4	1	1	2

Level of Revised Bloom's Taxonomy in Assessment:

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Enterprise architectures	1,2,3
3	Basic Concepts	1,2,3
4	Principles of Service-Oriented Architecture	1,2,4
5	Principles of Service-Oriented Computing	1,2,3,4

Department of Computer Engineering

Course Code: SECE3650

Course Name: Blockchain Fundamentals

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Dunatical Tutorial		eory Practical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
2	2	-	3	40	60	40	60	-	-	200	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand blockchain concepts, principles, structure, functionality, and applications.
- Learn the history, evolution, and significance of blockchain in decentralized systems.
- Differentiate between public, private, and consortium blockchains.

Course Content:

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction to Blockchain: The growth of blockchain technology, distributed systems and the history of blockchain, blockchain defined: Peer-to-peer, distributed ledger, cryptographically secure, append-only, and consensus mechanisms, generic elements of a blockchain and how blockchain works, types of blockchains: Public, private, semiprivate, tokenized, and tokenless, consensus mechanisms: CAP theorem, proof of work, and alternative methods, benefits, limitations, and applications of blockchain technology.	05	20		
2.	Cryptography in Blockcahin: Confidentiality, integrity, and authentication, symmetric cryptography: Block ciphers and stream ciphers, Advanced Encryption Standard (AES): Design and operation, public key cryptography: RSA, Elliptic Curve Cryptography (ECC), and digital signatures, cryptographic hash functions: SHA-256 and SHA-3, Merkle trees, Patricia trees, and Distributed Hash Tables (DHTs), zero-knowledge proofs, blind signatures, and homomorphic encryption.	06	20		
3.	Bitcoin: Overview and digital keys, Bitcoin addresses: Private keys, public keys, and Base58Check encoding, transactions in Bitcoin: Lifecycle, inputs, outputs, and transaction malleability, blockchain structure: Blocks, headers, and the genesis block, mining: Proof of Work, rewards, and mining systems (CPU, GPU, FPGA, ASIC), Bitcoin wallets: Types (brain, paper, hardware, mobile, online), innovations in Bitcoin: Bitcoin Improvement Proposals (BIPs), SegWit, and Bitcoin forks (Cash, Gold).	04	10		
77 7 7	Section II				
Module No.	Content	Hours	Weightage in %		
4.	Decentralization and Smart Contracts: Decentralization using blockchain: Disintermediation and ecosystem	07	25		

	TOTAL	30	100
5.	Alternative Cryptocurrencies and Development Tools: Proof of Stake (PoS), Proof of Storage, and other consensus algorithms, privacy and anonymity: Zcash, mixing protocols, and inherent anonymity, Initial Coin Offerings (ICOs): Overview and ERC20 tokens, development tools: Solidity, Truffle, MetaMask, and EthereumJS, programming in Solidity: Types, functions, and control structures, using Web3.js: Interfacing blockchain with JavaScript, developing and deploying Decentralized Applications (DApps).	08	25
	decentralization, decentralized organizations: DAOs, DACs, and DASs, smart contracts: History, definition, and templates, oracles and smart oracles for real-world data, deploying smart contracts on blockchain platforms, overview of the Ethereum ecosystem: Keys, accounts, and transactions, Ethereum Virtual Machine (EVM): World state, account state, and transaction execution		

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Creating a Merkle Tree and Understanding its Role in Blockchain	2
2.	Creation of a Block and Understanding Block Structure	2
3.	Implementing Blockchain with Basic Programming Code	2
4.	Creating an ERC20 Token and Deploying on Ethereum	2
5.	Implementing Blockchain with Java and Merkle Tree Integration	2
6.	Java Code to Implement Mining using Proof-of-Work in Blockchain	2
7.	Java Code to Implement Peer-to-Peer Network for Blockchain Transactions	2
8.	Creating a Cryptocurrency Wallet and Understanding Key Management	2
9.	Writing and Deploying a Basic Ethereum Smart Contract	2
10.	Implementing Blockchain Consensus Algorithms	2
11.	Developing a Decentralized Application (DApp) on Ethereum	2
12.	Building a Blockchain Explorer for Transaction Tracking	2
13.	Implementing Layer-2 Solutions for Blockchain Scalability	2
14.	Simulating Blockchain Security Attacks and Countermeasures	2
15.	Final Project: Developing a Blockchain-based System for Real-World Use Cases	2
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Mastering Blockchain: Distributed		
Ledger Technology,	Imran Bashir	Dealet Dublishing
Decentralization, and Smart	IIIITAII DASIIII	Packt Publishing
Contracts Explained, 2nd Edition		

Reference Book(s):

Title	Author(s)	Publication	
Blockchain Revolution: How the			
Technology Behind Bitcoin and	Don Tapscott, Alex Tapscott	Penguin Random House	
Other Cryptocurrencies is	Don Tapscott, Alex Tapscott		
Changing the World			
Ethereum: Smart Contract	Rishabh R. Singh	BPB Publications	
Programming in Solidity	Kishabii K. Siligii	BPB Publications	
Hyperledger Fabric: A Distributed	Nitin Gaur, Bill Lu, Chander	Miley	
Ledger Technology	Kant Gupta	Wiley	

Web Material Link(s):

- https://onlinecourses.nptel.ac.in/noc22 cs44/preview
- https://www.ibm.com/blockchain/what-is-blockchain
- https://ethereum.org/en/what-is-ethereum/
- https://www.packtpub.com/product/mastering-blockchain-second-edition/9781788621757
- https://www.hyperledger.org/use/fabric
- https://www.youtube.com/watch?v=SSo_ElwHSd4
- https://soliditylang.org/docs/
- https://www.youtube.com/watch?v=6WG7D47tGb0
- https://www.corda.net/corda-platform/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to

SECE3650	BLOCKCHAIN FUNDAMENTALS
CO 1	Demonstrate an understanding of blockchain technology, its core principles, and cryptographic methods, including public and private key cryptography, and consensus mechanisms.
CO 2	Analyze and compare the key features of Bitcoin and Ethereum, including blockchain structure, transaction types, and the role of mining, wallets, and smart contracts in both ecosystems.
CO 3	Evaluate the significance of smart contracts and their applications in decentralized systems, including a detailed understanding of Hyperledger projects, such as Fabric, Sawtooth, and Corda.
CO 4	Explain the architecture of the Ethereum blockchain, the role of the Ethereum Virtual Machine (EVM), and how Ethereum is used to develop decentralized applications (DApps) and decentralized finance (DeFi) solutions.
CO 5	Identify and assess scalability and security challenges in blockchain technology, with a focus on Ethereum, and explore solutions like Layer-2 protocols and the transition to Ethereum 2.0.

Mapping of CO with PO

FB												
SECE3650	P01	PO2	P03	PO4	PO5	P06	P07	P08	P09	P010	P011	PO12
CO 1	3	3	1	2	3				1			1
CO 2	3	3	2	1	3				1			1
CO 3	3	3	2	1	2				1			1
CO 4	3	3	2	1	3				1			1
CO 5	3	3	2	1	3				1	1		1

Mapping of CO with PSO

SECE3650	PSO1	PSO2	PSO3
CO 1	3	1	2
CO 2	3	2	1
CO 3	3	2	2
CO 4	3	3	1
CO 5	2	1	3

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Blockchain and Cryptography	1, 2
2.	Bitcoin and Ethereum Fundamentals	1, 2, 3
3.	Smart Contracts and Hyperledger Technology	2, 3, 4
4.	Ethereum and Its Applications	2, 3, 4, 5
5.	Blockchain Scalability and Security Challenges	3, 4, 5, 6

Department of Information Technology

Course Code: SEIT3640

Course Name: Advanced Web Technologies

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	C 1!4	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	02	00	03	40	60	40	60	-	1	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Write backend code in Python/Java, PHP languages and writing optimized front end code HTML and JavaScript.
- Understanding MVC architecture in Web based applications, with Advanced PHP concepts and Laravel Framework along with Node.js and Angular js.
- Give basic understanding of URL methods, MVC Framework, Unit Testing, Web Services, API Node Servers, and routing.

Course Content:

Section I								
Module No.	Content	Hours	Weightage in %					
1.	PHP Introduction to PHP and its syntax, combining PHP and HTML, understanding PHP code blocks like Arrays, Strings, Functions, looping and branching, file handling, processing forms on the server side, cookies, and sessions.	08	10					
2.	Object-Oriented PHP Object-Oriented Programming with PHP – Classes, Properties, Methods, Constructor, Destructor, Getters and Setters, Encapsulation, Inheritance, Data Abstraction, Polymorphism.	08	20					
3.	PHP & MySQL Introduction to PHPMyAdmin, connection to MySQL server from PHP, execution of MySQL queries from PHP, receiving data from the database server, and processing it on the webserver using PHP. Web Scraping using cURL, Regular Expressions, Mail functions, Web Services, and APIs.	06	20					
	Section II							
Module No.	Content	Hours	Weightage in %					
4.	PHP MVC Framework – Laravel Introduction to Laravel and MVC, Environment Setup, Routes, Namespaces, Controllers, Views, Blade Templates, Migrations, Request-Response cycle, Redirections, Forms, Sessions, Cookies, Database Connectivity, and CRUD operations.	09	15					
5.	Node.js and Angular Basic web development, environmental setup, callbacks, node package manager (NPM) utilization, streams and buffers, Express framework basics, MongoDB basics, and REST API creation. Setup	08	15					

	Node.js with Angular.		
	Web Sockets		
	Introduction to Web Sockets, Web Socket URIs, Web Socket APIs,	06	20
6.	Opening Handshake, Data Framing, Sending and Receiving Data,		20
	Closing Connections, Error Handling, and Web Socket Security.		
	TOTAL	45	100

List of Practical:

Sr. No	Name of Practical	Hours
1.	Install and Configure PHP and MySQL	04
2.	Develop a Simple Web Page in PHP Using Class, Object, Inheritance, and	02
۷.	Function	
3.	Develop a Web Application in PHP Using Constructor and Destructor	02
4.	Write a PHP Program to Calculate Date and Time Functions	02
5.	Create a Web Page to Advertise a Product of the Company Using Images and	02
Э.	Audio	
6.	Create a PHP Page for Login System Using Session	02
7.	Create a Web Page for a Travel Agency with Database Connectivity	02
8.	Develop a Small Project Using the Laravel Framework	04
9.	Develop a Web Application as a Mini Project Using Node.js	10
	TOTAL	30

Text Book (s):

Title	Author/s	Publication
Black Book, Web Technologies	Kogent Learning	Dreamtech Press
	Solutions Inc	
Full Stack Web Development for Beginners	Riaz Ahmed	Atlantic publisher

Reference Book (s):

Title	Author/s	Publication		
Web Technologies-A Computer	Jeffrey C. Jackson	Pearson Education		
Science Perspective				
AngularJS: Up and Running	Brad Green, Shyam	O'Reilly Media		
Enhanced Productivity with	Seshadri			
Structured Web Apps				
Learning React Functional Web	Alex Banks, Eve	O'Reilly Media		
Development with React and	Porcello			
Redux				

Web Material Link(s):

- https://www.w3schools.com/whatis/whatis-fullstack.asp
- https://www.geeksforgeeks.org/web-technology/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted out of 30 marks.
- Faculty Evaluation consists of 10 marks as per guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks Exam.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 20 marks for each practical and average of the same will be converted to 20 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/test of 30 marks during End Semester Exam.
- Viva/Oral performance of 30 marks during End Semester Exam.

Course Outcome(s): After the completion of the course, the following course outcomes will be able to:

SEIT3640	ADVANCED WEB TECHNOLOGIES
CO1	Identify the basic concepts of web & markup languages.
CO2	Develop web applications using scripting languages & frameworks.
CO3	Creating controller working with and displaying in angular js and nested forms with ng-
COS	form.
CO4	Working with the files in react js and constructing elements with data.
CO5	Develop dynamic web pages with usage of server-side scripting NodeJS and MongoDB.

Mapping of CO with PO

happing of do with for												
SEIT3640	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1		3	3	2	3	2		3	1			1
CO 2		3	3	2	3	2		3	3		2	2
CO 3		3	3	2	3	2		3	3		3	3
CO 4		3	3	2	3	2		3	3		2	3
CO 5		3	3	2	3	2		3	3		3	3

Mapping of CO with PSO

SEIT3640	PSO1	PSO2	PSO3
CO 1	2	2	1
CO 2	1	3	3
CO 3	3	3	3
CO 4	3	3	3
CO 5	3	3	3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	PHP	1,2,3
2	Object Oriented PHP	2,3
3	Advance PHP	2,3,6
4	PHP MVC Framework – Laravel	2,3
5	PHP & MySQL	2,3,4,6
6	Web Sockets	2,3,4,6

Department of Information Technology

Course Code: SEIT3650

Course Name: Augmented Reality and Virtual Reality

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	Dragtical	Tutorial Cuad		Tutorial Cradit		Tutorial Cradit Theory		Practical		Tutorial		Total
Theory	Practical	Tutoriai	Tutorial Credit		ESE	CE	ESE	CE	ESE	Total		
2	2	0	4	40	60	40	60	0	0	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand the principles, architecture, and components of AR and VR systems and their applications in real-world scenarios.
- Design and develop basic AR/VR applications using appropriate tools and technologies for immersive user experiences.
- Analyze the challenges and limitations of AR/VR systems, including hardware, software, and user interaction considerations.

Course Content:

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Introduction to Augmented Reality (AR) History of AR - Augmented reality characteristics, Difference between Augmented Reality and Virtual Reality, AR technological components, Technologies used in AR, Feature Extraction, Hardware component, AR devices, Importance of AR, Real world uses of AR - AR types, Software tools available for AR.	03	12						
2.	AR Hardware and Software Sensory hardware; Limitations and interactions; AR and VR together; Introduction to AR headset and smart glasses; Various AR software available; Introduction to Spark AR; Create a face detection app	04	15						
3.	Technology Integration and Implementation of AR Technology use and integration in industrial settings, Assistive training to faculty members, Planning and administration for implementation, AR implications.	05	15						
4.	Augmented Reality and Virtual Reality for Micro Learning Micro learning techniques, Utilizing VR for learning, VR for Practical online assessment, VR info graphics, Virtual case considerations, Utilizing AR for learning, Accessible learning, sensible data elevated learner engagement, VR technology, Components of VR, VR Hardware, VR applications, Civil Engineering, Real Estate, Biology and Medicine, Virtual Mall, VR in Education, Virtual Laboratory, Factory Planning, Automobile Industry.	05	15						
	Section II								
Module No.	Content	Hours	Weightage in %						
5.	VR Development Tools and Frameworks Introduction to VR development platforms (Unity, Unreal Engine),	04	16						

	Creating 3D environments for VR, Basics of VR interactions and animations, Integration of audio and spatial effects in VR		
6.	Interaction Techniques in AR/VR Interaction design principles for AR/VR, Gesture recognition and tracking, Voice and eye-tracking in AR/VR systems	05	15
7.	AR/VR Project Implementation Project planning and development lifecycle, Designing an end-to-end AR/VR solution, Presentation and evaluation of projects	04	12
	TOTAL	30	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Introduction to Spark and the Fundamentals Function	04
2.	Create a Face Detection App using spark.	08
3.	Introduction to Unity and its installation.	04
4.	Introduction to AR foundation; Installing AR foundation SDK; SDK setup	10
5.	Introduction to C-sharp and its Basics	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Innovating with Augmented Reality:	Taylor & Francis Group	CRC Press,
Applications in Education and		
Industry		
Understanding Virtual Reality:	William R Sherman and	Understanding Virtual
Interface, Application and Design		Reality: Interface,
		Application and Design

Reference Book(s):

Title	Author(s)	Publication		
Designing Virtual Systems: The	Gerard Jounghyun Kim	WILEY		
Structured Approach"				
"3D User Interfaces, Theory and	Doug A Bowman, Ernest Kuijff,	Addison Wesley		
Practice	Joseph J LaViola			

Web Material Link(s):

- https://nptel.ac.in/courses/106/106/106106138/
- https://www.coursera.org/learn/introduction-virtual-reality

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of practical performance which should be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva-voce consists of 30 marks during End Semester Exam.

Course Outcome(s):After completion of the course, the students will be able to

SEIT3650	Augmented Reality and Virtual Reality
CO 1	Develop a strong understanding of AR/VR concepts, technologies, and applications
	across various industries, enhancing career prospects.
CO 2	Gain proficiency in AR/VR development tools and frameworks, enabling the creation
	of interactive and immersive experiences.
CO 3	Acquire skills in designing user interactions, integrating 3D models, and optimizing
	AR/VR applications for diverse platforms and devices.
CO 4	Address challenges in AR/VR deployment, including ethical considerations and
	privacy concerns, while exploring future trends like XR and MR.

Mapping of CO with PO

mapping or	mapping of co with fo											
SEIT3650	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	P010	PO11	PO12
CO 1	3	3		1	3					2	3	1
CO 2	2	3	3		3	2		1				1
CO 3	2	3	2	1	2	3		1	2	2	3	1
CO 4	3	2	2			2			3	2		1
CO 5	3	3	1		2					1	3	1

Mapping of CO with PSO

SEIT3650	PSO1	PSO2	PSO3
CO 1	3	3	1
CO 2	2	1	3
CO 3	1	2	
CO 4	3	1	1
CO 5	2	2	3

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1.	Introduction to Augmented Reality (AR)	2,4
2.	AR Hardware and Software	2,3,4
3.	Technology Integration and Implementation of AR	2,4.5
4.	Augmented Reality and Virtual Reality for Micro	1,2,5
	Learning	
5.	VR Development Tools and Frameworks	2,3,4,6
6.	Interaction Techniques in AR/VR	2,3,5
7.	AR/VR Project Implementation	2,3

P P Savani University Training and Placement Cell

Course Code: TNPC3010

Course Name: Corporate Grooming & Etiquette

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
01	02	00	02	0	0	50	50		-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn corporate and professional structure and mannerisms.
- acquire self-development skills to balance casual and formal situation.
- polish their personal skills for apt behavior in the context of corporate structure.
- develop adequate Skill set required for the workplace.
- become aware about the professional etiquettes and tactics to follow them.

Course Content:

	Section - I		
Module No.	Content	Hours	Weightage in %
1	Corporate Grooming Introduction to corporate culture Corporate Expectations Need of Self-Grooming to the Corporate Expectations Understanding and importance of Professionalism	03	25
2	Personal Skills Behavioral skills, Language Skills, Knowledge Skills, Problem Solving Skills, Developing professional attitude	04	25
	Section - II		
3	Management Skills Self-management, Time management, Work life balance	04	25
4	Organizational Etiquettes General Workplace Etiquettes Presentation Etiquettes Meeting Etiquettes	04	25

List of Practical:

Sr. No	Name of Practical	Hours
1	Corporate Grooming (Video session/ Role Play/ Skit)	04
2	Personal Skills (Games/ Quiz/ Activities)	08
3	Management Skills (Management Activities/ Video Sessions)	06
4	Organizational Etiquettes (Case Study/ Activities/ Video Sessions)	06
5	Computer Assisted Activities of Corporate Grooming	06

Reference Book(s):

Title	Author/s	Publication
Grooming and Etiquette for Corporate Men and Women	John Chibaya Mbuya	2009

Effective Communication Skills for Public Relations	Andy Green	Kogan Page, 2006
Personality Development and Soft Skills	Barun Mitra	Oxford University Press, 2016
The EQ Edge: Emotional Intelligence and Your Success	Stein, Steven J. & Howard E. Book	Wiley & Sons, 2006.
Cross Cultural Management: Concepts and Cases	Madhavan	Oxford University Press, 2016
Corporate Grooming and Etiquette	Sarvesh Gulati	Rupa Publications India Pvt. Ltd., 2012
Behavioral Science: Achieving Behavioral Excellence for Success	Dr. Abha Singh	John Wiley & Sons, 2012

Course Evaluation:

Practical

- Continuous Evaluation consists of Performance of Practical to be evaluated out of 10 for each practical and average of the same will be converted to 30 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test/submission of 25 marks during End Semester Exam.
- Viva/Oral performance of 25 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

TNPC3010	CORPORATE GROOMING & ETIQUETTE
CO 1	Understand the importance of professional etiquettes and ways to improve the same.
CO 2	Gain the knowledge and practice of skill sets required in corporate set up.
CO 3	Learn personal management skills in the organizational context.
CO 4	Develop an awareness about the corporate etiquettes.
CO 5	Understand the importance of self-grooming

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Corporate Grooming	1,2,3,4,5
2	Personal Skills	1,2,3,4,5,6
3	Management Skills	1,2,3,4,5
4	Organizational Etiquettes	2,3,4,5

Department of Computer Engineering

Course Code: SECE3490

Course Name: MOOC Course / University Elective

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	-	-	03	100	-	-	-	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s)of the Course:

To help the learners to

• Learn new subjects as per recent trends in the industry from national experts.

Course Content:

Performance analysis will be based on any one of the following subjects:

- 1. Deep Learning
- 2. Computer Graphics
- 3. Computer Vision
- 4. Design Engineering
- 5. Neural Networks
- 6. Applied Natural Language Processing
- 7. Social Networks
- 8. Virtual Reality
- 9. Augmented Reality
- 10. Real time systems
- 11. Big Data
- 12. Advanced graph theory
- 13. Theory of computation
- 14. Design And Engineering Of Computer Systems
- 15. Ethical Hacking
- 16. UI & UX
- 17. Data Analytics
- 18. Data Visualization
- 19. Algorithms For Big Data
- 20. Compiler Design

Or any other MOOC course; available time to time.

Course Evaluation:

Practical:

- Continuous Evaluation as per the guidelines of Course assignments/Internal Exams.
- The Course assignments/Internal Exams score will be directly fetched and converted out of 100.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECE3490	MOOC COURSE / UNIVERSITY ELECTIVE
CO 1	Inculcate mode of self-learning.
CO 2	Exposure to relevant and newest tools and technologies.
CO 3	Value addition when the student is applying for jobs.
CO 4	Use MOOC program for GATE and high studies preparation.
CO 5	Facilitate students to attain certificate and to make them employable in the industry or pursue higher education program.

Mapping of CO with PO

SECE3490	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1		1		2	1	1		1			1
CO 2	1		2	2	2				1	1		2
CO 3		2	2	2	2			1		2		
CO 4	2	1		1	1	1				1		2
CO 5						1		1		2		3

Mapping of CO with PSO

SECE3490	PSO1	PSO2	PSO3
CO 1	2	2	3
CO 2	3	2	2
CO 3	2	3	3
CO 4	3	3	2
CO 5	3	3	3